Susceptibility of the developing brain to acute hypoglycemia involving A1 adenosine receptor activation

Author:

Kim Mina,Yu Zhao-Xue,Fredholm Bertil B.,Rivkees Scott A.

Abstract

It has been suggested that the developing brain is less vulnerable to the adverse effects of hypoglycemia than the mature brain; however, this issue remains controversial. We also do not know the magnitude or duration of hypoglycemia needed to trigger hypoglycemic brain injury during development. To address this issue a series of in vivo and in vitro studies were performed. First, we established an acute model of insulin-induced hypoglycemia in mice by administering 3 U/kg of neutral-protamine Hagadorn insulin subcutaneously. When we examined degenerating neurons in hippocampus and striatum by TUNEL labeling, injury was observed after 4 h of hypoglycemia in postnatal day ( P)7 mice, and we observed more cell injury in animals rendered hypoglycemic at P 7 than at P21. Studies of hippocampal slice cultures revealed that reduction in glucose concentration induced more neuronal injury in slices prepared from P3 and P7 than from P14 and P21 mice. Treatment of slices with an adenosine A1 receptor (A1AR) antagonist reduced the hypoglycemic damage, whereas agonists increased damage, particularly in slices prepared from very young pups. This suggests a critically important role for A1ARs, which was further demonstrated by the reduction of hypoglycemic damage in hippocampal slices prepared from A1AR−/− mice. Furthermore, insulin-induced hypoglycemia in P7 A1AR−/− mice did not increase TUNEL-positive cells, but a major increase was seen in A1AR+/− mice. These observations show that the developing nervous system is indeed sensitive to acute hypoglycemic injury and that A1AR activation contributes to damage induced by hypoglycemia, particularly in immature mouse brain.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Reference58 articles.

1. Persistent hyperinsulinemic hypoglycemia of infancy: Experience with 28 cases

2. Role of excitatory aminoacids in neonatal hypoglycemia

3. Auer RN. Excitotoxic mechanisms, and age-related susceptibility to brain damage in ischemia, hypoglycemia and toxic mussel poisoning. Neurotoxicology 12: 541–546, 1991.

4. Biological differences between ischemia, hypoglycemia, and epilepsy

5. Hypoglycaemia: brain neurochemistry and neuropathology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3