Insulin-like growth factor-II in adipocyte regulation: depot-specific actions suggest a potential role limiting excess visceral adiposity

Author:

Alfares Maiadah N.1,Perks Claire M.1,Hamilton-Shield Julian P.2,Holly Jeffrey M. P.1

Affiliation:

1. Insulin-like Growth Factors and Metabolic Endocrinology Group, Bristol Medical School, Department of Translational Health Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol, United Kingdom

2. Nutrition Theme, National Institute of Health Research Bristol Biomedical Research Centre, Bristol Medical School, Department of Translational Health Sciences, University of Bristol, Bristol, United Kingdom

Abstract

The IGF system has an important role in growth and development. IGF-II is a recognized fetal growth promoter. However, its physiological postnatal role remains uncertain, although it is maintained in the circulation at a substantially high level throughout life. IGF-II has been strongly linked to obesity in genetic studies, and more recent evidence suggests a metabolic role. We examined fat depot differences in IGF-II’s action on differentiation and metabolism. We speculate a specific effect on visceral adipocytes in relation to the differential distribution of insulin receptors between visceral and subcutaneous fat depots. We used a previously established adipocyte, cell culture system of matched pairs of visceral and subcutaneous fat biopsies from 20 normal weight children undergoing routine surgery for nonmalignant, nonseptic conditions. Preadipocytes were differentiated for 14 days in the presence or absence of IGF-II. Oil Red O staining, Western blotting, and reverse transcription polymerase chain reaction techniques were employed to assess levels of adipogenesis markers and levels of the insulin receptor and insulin receptor isoforms. Our data indicate that IGF-II promotes preadipocyte differentiation in subcutaneous preadipocytes but showed a protective, opposing effect restricting visceral preadipocyte differentiation, confirmed by reductions in the differentiation markers peroxisome proliferator-activated receptor gamma and adiponectin and in triglyceride staining. Additionally, IGF-II reduced mRNA expression of the insulin receptor in adipocytes and downregulated insulin receptor isoform A and glucose transporter 4 abundance and corresponding glucose uptake in visceral adipocytes. In conclusion, IGF-II is a regulator of preadipocyte differentiation and metabolism by acting as a differential modulator of fat accumulation favoring less visceral fat deposition in children.

Funder

Imam Abdulrahman Bin Faisal Univeristy

DH | National Institute for Health Research (NIHR)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3