Changes in fatty acid transport and transporters are related to the severity of insulin deficiency

Author:

Luiken Joost J. F. P.12,Arumugam Yoga1,Bell Rhonda C.3,Calles-Escandon Jorge4,Tandon Narendra N.5,Glatz Jan F. C.2,Bonen Arend1

Affiliation:

1. Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1;

2. Department of Physiology, Maastricht University, 6200 MD Maastricht, The Netherlands;

3. Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T5G 2S2, Canada;

4. Glaxo SmithKline, Miami, Florida 33134; and

5. Thrombosis and Vascular Biology Laboratory, Otsuka America Pharmaceutical, Rockville, Maryland 20850

Abstract

We have examined the effects of streptozotocin (STZ)-induced diabetes (moderate and severe) on fatty acid transport and fatty acid transporter (FAT/CD36) and plasma membrane-bound fatty acid binding protein (FABPpm) expression, at the mRNA and protein level, as well as their plasmalemmal localization. These studies have shown that, with STZ-induced diabetes, 1) fatty acid transport across the plasma membrane is increased in heart, skeletal muscle, and adipose tissue and is reduced in liver; 2) changes in fatty acid transport are generally not associated with changes in fatty acid transporter mRNAs, except in the heart; 3) increases in fatty acid transport in heart and skeletal muscle occurred with concomitant increases in plasma membrane FAT/CD36, whereas in contrast, the increase and decrease in fatty acid transport in adipose tissue and liver, respectively, were accompanied by concomitant increments and reductions in plasma membrane FABPpm; and finally, 4) the increases in plasma membrane transporters (FAT/CD36 in heart and skeletal muscle; FABPpm in adipose tissue) were attributable to their increased expression, whereas in liver, the reduced plasma membrane FABPpm appeared to be due to its relocation within the cell in the face of slightly increased expression. Taken together, STZ-induced changes in fatty acid uptake demonstrate a complex and tissue-specific pattern, involving different fatty acid transporters in different tissues, in combination with different underlying mechanisms to alter their surface abundance.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3