Affiliation:
1. Department of Pharmaceutical Sciences, Wayne State University, Detroit 48202, and β-Cell Biochemistry Research Laboratory, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan 48201
Abstract
We recently described novel regulatory roles for protein histidine phosphorylation of key islet proteins (e.g., nucleoside diphosphate kinase and succinyl thiokinase) in insulin secretion from the islet β-cell (Kowluru A. Diabetologia 44: 89-94, 2001; Kowluru A, Tannous M, and Chen HQ. Arch Biochem Biophys 398: 160-169, 2002). In this context, we also characterized a novel, ATP- and GTP-sensitive protein histidine kinase in isolated β-cells that catalyzed the histidine phosphorylation of islet (endogenous) proteins as well as exogenously added histone 4, and we implicated this kinase in the activation of islet endogenous G proteins (Kowluru A. Biochem Pharmacol 63: 2091-2100, 2002). In the present study, we describe abnormalities in ATP- or GTP-mediated histidine phosphorylation of nucleoside diphosphate kinase in islets derived from the Goto-Kakizaki (GK) rat, a model for non-insulin-dependent diabetes. Furthermore, we provide evidence for a marked reduction in the activities of ATP- or GTP-sensitive histidine kinases in GK rat islets. On the basis of these observations, we propose that alterations in protein histidine phosphorylation could contribute toward insulin-secretory abnormalities demonstrable in the diabetic islet.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献