Affiliation:
1. Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; and
2. School of Biological Sciences, University of Hong Kong, Hong Kong, China
Abstract
Although the importance of kisspeptin in the pituitary is firmly established, the signaling mechanisms for the pituitary actions of kisspeptin are still largely unknown. Somatolactin (SL), a member of the growth hormone (GH)/prolactin (PRL) family, is a pituitary hormone with pleiotropic functions in fish, but its regulation by kisspeptin has not been examined. To investigate the functional role of kisspeptin in SL regulation, expression of two paralogues of goldfish Kiss1 receptors (Kiss1ra and Kiss1rb) were confirmed in immunoidentified SLα but not SLβ cells isolated by RT-PCR coupled with laser capture microdissection. In goldfish pituitary cells prepared from neurointermediate lobe (NIL), synthetic goldfish Kiss decapeptides (gKiss1-10 and gKiss2-10) could increase SLα release. Consistent with the lack of Kiss1r expression in SLβ cells, SLβ release was not altered by kisspeptin stimulation. In parallel experiments, goldfish gKiss1-10 could elevate cyclic adenosine monophosphate (cAMP) production, upregulate protein kinase A (PKA) and protein kinase C (PKC) activities, and trigger a rapid rise in intracellular Ca2+ levels in goldfish NIL cells. Using a pharmacological approach, cAMP/PKA and phospholipase C (PLC)/PKC pathways and subsequent activation of Ca2+/calmodulin (CaM)-dependent cascades were shown to be involved in SLα release induced by gKiss1-10. Apparently, the Ca2+-dependent cascades were triggered by extracellular Ca2+ entry via voltage-sensitive Ca2+ channels and mobilization of inositol trisphosphate-sensitive intracellular Ca2+ stores. Our results demonstrate that gKiss1-10 can act directly at the pituitary level to trigger SLα release via a complex network of post-receptor signaling mechanisms.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献