Hepatic fuel metabolism during muscular work: role and regulation

Author:

Wasserman D. H.,Cherrington A. D.

Abstract

The increased fuel demands of the working muscle necessitate that metabolic processes within the liver be accelerated accordingly. The sum of changes in hepatic glycogenolysis and gluconeogenesis are closely coupled to the increase in glucose uptake by the working muscle, due to the actions of the pancreatic hormones. The exercise-induced rise in glucagon and fall in insulin interact to stimulate hepatic glycogenolysis, whereas the increase in gluconeogenesis is determined primarily by glucagon action. The increment in gluconeogenesis is caused by increases in hepatic gluconeogenic precursor delivery and fractional extraction as well as in the efficiency of intrahepatic conversion to glucose. Glucagon stimulates the latter two processes. Epinephrine may become important in the regulation of hepatic glucose production during prolonged or heavy exercise when its levels are particularly high. On the other hand, there is no evidence that hepatic innervation is essential for the rise in hepatic glucose production during exercise. Nonesterified fatty acid (NEFA) delivery to, uptake of, and oxidation by the liver are accelerated during prolonged exercise, resulting in an increase in ketogenesis. The rate of the first two of these processes is largely determined by factors that stimulate fat mobilization. The third step is regulated by both NEFA delivery to and glucagon-stimulated fat oxidation within the liver. The increase in hepatic fat oxidation produces energy that fuels gluconeogenesis. The shuttling of amino acids to the liver provides carbon-based compounds that are used for gluconeogenesis, transfers nitrogen to the liver, and supplies substrate for protein synthesis. During exercise, metabolic events within the liver, which are regulated by hormone levels and substrate supply, integrate pathways of carbohydrate, fat, and amino acid metabolism. These processes function to provide substrates for muscular energy metabolism and conserve carbon in glucose and nitrogen in protein.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3