Exercise tames the wild side of the Myc network: a hypothesis

Author:

Gohil Kishorchandra1,Brooks George A.1

Affiliation:

1. Exercise Physiology Laboratory, Dept. of Integrative Biology, University of California, Berkeley California

Abstract

We propose that the well-documented therapeutic actions of repeated physical activities over human lifespan are mediated by the rapidly turning over proto-oncogenic Myc (myelocytomatosis) network of transcription factors. This transcription factor network is unique in utilizing promoter and epigenomic (acetylation/deacetylation, methylation/demethylation) mechanisms for controlling genes that include those encoding intermediary metabolism (the primary source of acetyl groups), mitochondrial functions and biogenesis, and coupling their expression with regulation of cell growth and proliferation. We further propose that remote functioning of the network occurs because there are two arms of this network, which consists of driver cells (e.g., working myocytes) that metabolize carbohydrates, fats, proteins, and oxygen and produce redox-modulating metabolites such as H2O2, NAD+, and lactate. The exercise-induced products represent autocrine, paracrine, or endocrine signals for target recipient cells (e.g., aortic endothelium, hepatocytes, and pancreatic β-cells) in which the metabolic signals are coupled with genomic networks and interorgan signaling is activated. And finally, we propose that lactate, the major metabolite released from working muscles and transported into recipient cells, links the two arms of the signaling pathway. Recently discovered contributions of the Myc network in stem cell development and maintenance further suggest that regular physical activity may prevent age-related diseases such as cardiovascular pathologies, cancers, diabetes, and neurological functions through prevention of stem cell dysfunctions and depletion with aging. Hence, regular physical activities may attenuate the various deleterious effects of the Myc network on health, the wild side of the Myc-network, through modulating transcription of genes associated with glucose and energy metabolism and maintain a healthy human status.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3