Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro

Author:

Petersen E. W.,Carey A. L.,Sacchetti M.,Steinberg G. R.,Macaulay S. L.,Febbraio M. A.,Pedersen B. K.

Abstract

To determine whether IL-6 increases lipolysis and fat oxidation in patients with type 2 diabetes and/or whether it exerts this effect independently of changes to the hormonal milieu, patients with type 2 diabetes (D) and healthy control subjects (CON) underwent recombinant human (rh)IL-6 infusion for 3 h. Rates of appearance (Ra) and disappearance (Rd) of [U-13C]palmitate and [6,6-2H2]glucose were determined. rhIL-6 infusion increased ( P < 0.05) palmitate Ra and Rd in a similar fashion in both groups. Neither plasma glucose concentration nor glucose Ra/Rd was affected by rhIL-6 infusion in either group, whereas rhIL-6 infusion resulted in a reduction ( P < 0.05) in circulating insulin in D. Plasma growth hormone (GH) was increased ( P < 0.05) by IL-6 in CON, and cortisol increased ( P < 0.05) in response to IL-6 in both groups. To determine whether IL-6 was exerting its effect directly or through activation of these hormones, we performed cell culture experiments. Fully differentiated 3T3-L1 adipocytes were treated with PBS (control) IL-6, or IL-6 plus dexamethasone and GH. IL-6 treatment alone increased ( P < 0.05) lipolysis, but this effect was reduced by the addition of dexamethasone and GH such that IL-6 plus dexamethasone and GH had blunted ( P < 0.05) lipolysis compared with IL-6 alone. To assess whether IL-6 increases fat oxidation, L6 myotubes were treated with PBS (Control), IL-6, or AICAR, a compound known to increase lipid oxidation. Both IL-6 and AICAR markedly increased ( P < 0.05) oxidation of [14C]palmitate compared with Control. Acute IL-6 treatment increased fatty acid turnover in D patients as well as healthy CON subjects. Moreover, IL-6 appears to be activating lipolysis independently of elevations in GH and/or cortisol and appears to be a potent catalyst for fat oxidation in muscle cells.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3