Affiliation:
1. I. Frauenklinik Innenstadt and
2. Division of Clinical Pharmacology, Department of Internal Medicine, University Hospital, CH-8091 Zürich, Switzerland
3. Medizinische Klinik II Großhadern, Klinikum der Universität München, D-80337 Munich; and
4. Zentrum für Physiologie und Pathophysiologie, D-37073 Gottingen, Germany; and
Abstract
Human trophoblasts depend on the supply of external precursors, such as dehydroepiandrosterone-3-sulfate (DHEA-S) and 16α-OH-DHEA-S, for synthesis of estrogens. The aim of the present study was to characterize the uptake of DHEA-S by isolated mononucleated trophoblasts (MT) and to identify the involved transporter polypeptides. The kinetic analysis of DHEA-35S uptake by MT revealed a saturable uptake mechanism ( K m = 26 μM, V max = 428 pmol · mg protein−1 · min−1), which was superimposed by a nonsaturable uptake mechanism (diffusion constant = 1.2 μl · mg protein−1 · min−1). Uptake of [3H]DHEA-S by MT was Na+dependent and inhibited by sulfobromophthalein (BSP), steroid sulfates, and probenecid, but not by steroid glucuronides, unconjugated steroids, conjugated bile acids, ouabain, p-aminohippurate (PAH), and bumetanide. MT took up [35S]BSP, [3H]estrone-sulfate, but not 3H-labeled ouabain, estradiol-17β-glucuronide, taurocholate, and PAH. RT-PCR revealed that the organic anion-transporting polypeptides OATP-B, -D, -E, and the organic anion transporter OAT-4 are highly expressed, and that OATP-A, -C, -8, OAT-3, and Na+-taurocholate cotransporting polypeptide (NTCP) are not or are only lowly expressed in term placental tissue and freshly isolated and cultured trophoblasts. Immunohistochemistry of first- and third-trimester placenta detected OAT-4 on cytotrophoblast membranes and at the basal surface of the syncytiotrophoblast. Our results indicate that uptake of steroid sulfates by isolated MT is mediated by OATP-B and OAT-4 and suggest a physiological role of both carrier proteins in placental uptake of fetal-derived steroid sulfates.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
150 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献