Pathogenic role of Fgf23 in Hyp mice

Author:

Liu Shiguang,Zhou Jianping,Tang Wen,Jiang Xi,Rowe David W.,Quarles L. Darryl

Abstract

Inactivating mutations of the PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) endopeptidase, the disease-causing gene in X-linked hypophosphatemia (XLH), results in increased circulating levels of fibroblastic growth factor-23 (FGF23), a bone-derived phosphaturic factor. To determine the causal role of FGF23 in XLH, we generated a combined Fgf23-deficient enhanced green fluorescent protein (eGFP) reporter and Phex-deficient Hyp mouse model ( Fgf23+/−/ Hyp). eGFP expression was expressed in osteocytes embedded in bone that exhibited marked upregulation of eGFP in response to Phex deficiency and in CD31-positive cells in bone marrow venules that expressed low eGFP levels independently of Phex. In bone marrow stromal cells (BMSCs) derived from Fgf23−/−/ Hyp mice, eGFP expression was also selectively increased in osteocyte-like cells within mineralization nodules and detected in low levels in CD31-positive cells. Surprisingly, eGFP expression was not increased in cell surface osteoblasts, indicating that Phex deficiency is necessary but not sufficient for increased Fgf23 expression in the osteoblast lineage. Additional factors, associated with either osteocyte differentiation and/or extracellular matrix, are necessary for Phex deficiency to stimulate Fgf23 gene transcription in bone. Regardless, the deletion of Fgf23 from Hyp mice reversed the hypophosphatemia, abnormal 1,25(OH)2D3 levels, rickets, and osteomalacia associated with Phex deficiency. These results suggest that Fgf23 acts downstream of Phex to cause both the renal and bone phenotypes in Hyp mice.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 440 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3