Single-cell responses to three-dimensional structure in a functionally defined patch in macaque area TEO

Author:

Alizadeh Amir-Mohammad1,Van Dromme Ilse C.1,Janssen Peter1

Affiliation:

1. Department of Neuroscience, Research Group Neurophysiology, The Leuven Brain Institute, Leuven, Belgium

Abstract

Both dorsal and ventral visual pathways harbor several areas sensitive to gradients of binocular disparity (i.e., higher-order disparity). Although a wealth of information exists about disparity processing in early visual (V1, V2, and V3) and end-stage areas, TE in the ventral stream, and the anterior intraparietal area (AIP) in the dorsal stream, little is known about midlevel area TEO in the ventral pathway. We recorded single-unit responses to disparity-defined curved stimuli in a functional magnetic resonance imaging (fMRI) activation elicited by curved surfaces compared with flat surfaces in the macaque area TEO. This fMRI activation contained a small proportion of disparity-selective neurons, with very few of them second-order disparity selective. Overall, this population of TEO neurons did not preserve its three-dimensional structure selectivity across positions in depth, indicating a lack of higher-order disparity selectivity, but showed stronger responses to flat surfaces than to curved surfaces, as predicted by the fMRI experiment. The receptive fields of the responsive TEO cells were relatively small and generally foveal. A linear support vector machine classifier showed that this population of disparity-selective TEO neurons contains reliable information about the sign of curvature and the position in depth of the stimulus. NEW & NOTEWORTHY We recorded in a part of the macaque area TEO that is activated more by curved surfaces than by flat surfaces at different disparities using the same stimuli. In contrast to previous studies, this functional magnetic resonance imaging-defined patch did not contain a large number of higher-order disparity-selective neurons. However, a linear support vector machine could reliably classify both the sign of the disparity gradient and the position in depth of the stimuli.

Funder

Fonds voor Wetenschappelijk Onderzoek Vlaanderen

Program Financing

IUAP

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3