Coordinating movement at two joints: a principle of linear covariance

Author:

Gottlieb G. L.1,Song Q.1,Hong D. A.1,Almeida G. L.1,Corcos D.1

Affiliation:

1. Boston University, Neuromuscular Research Center, Massachusetts 02215,USA.

Abstract

1. Six subjects performed fast, "single-joint" flexions at either the elbow or shoulder over three angular distances in a sagittal plane. Movement endpoints were located to require flexion of only a single, "focal" joint, without any external, mechanical constraint on the other, "nonfocal" joint. Three subjects performed another series of movements between two targets while moving along different paths and in which both joints were flexed. 2. We compared the torque patterns that were produced at the two joints. For single-joint movements, they were both biphasic pulses that accelerated and then decelerated the limb. 3. The torque at the nonfocal joint of a single joint movement was very close to linearly proportional to that at the focal joint throughout the movement. Elbow and shoulder torques differed by a linear scaling constant and went through extrema and zero crossings almost simultaneously. 4. In contrast, during movements in which subjects were explicitly instructed to use a hand path they would not naturally, use the linear interjoint torque scaling rule did not apply. This demonstrated that when we wish to move along a path between two targets that is not produced by linear torque covariation, we are able to modify that rule at will. 5. We speculate that linear, dynamic covariation of the torque patterns across two joints may be an important principle for reducing the number of degrees of freedom that the nervous system must independently control in performing unconstrained limb movements over naturally chosen paths.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3