Role of sympathetic postganglionic neurons in synovial plasma extravasation induced by bradykinin

Author:

Miao F. J.1,Janig W.1,Levine J.1

Affiliation:

1. Department of Medicine, University of California at San Francisco94143-0452A, USA.

Abstract

1. Plasma extravasation through the endothelium of blood vessels is an integral component of the inflammatory response and is dependent to a large extent on the inflammatory mediator bradykinin (BK). We studied plasma extravasation induced by BK perfusion (BK-induced PE) of the rat knee joint before and after various interventions that affect the sympathetic supply to the knee joint. We tested the hypothesis that plasma extravasation is dependent on the local sympathetic terminal supply to the synovia but not directly dependent on more proximal activity in the sympathetic neurons. As a control we used plasma extravasation induced by platelet activating factor (PAF), which acts directly on the endothelium of the blood vessels, that is, its action is independent of any innervation. Plasma extravasation into the knee joint cavity was determined spectrophotometrically by measuring, over time, the concentration of Evans blue dye extravasation into the joint perfusate following intravenous injection of the dye. 2. Surgical sympathectomy at the lumbar level (L2-L4), performed 4 and 14 days previously, reduced BK-induced PE by approximately 55-70%. 3. Decentralization of the lumbar sympathetic chain (cutting the preganglionic axons that innervate the postganglionic neurons to the hindlimb), interruption of the lumbar sympathetic chain during infusion of BK, or coperfusion of tetrodotoxin into the knee joint cavity did not reduce BK-induced PE. All three interventions abolish the activity in the sympathetic neurons but leave the peripheral postganglionic terminals in the joint capsule intact. 4. Surgical sympathectomy and decentralization did not affect plasma extravasation induced by the intra-articular perfusion with PAF. 5. Electrical stimulation of the lumbar sympathetic chain at frequencies of 0.25-5 Hz, which probably also significantly decreases blood flow through the joint capsule, reduced basal plasma extravasation, BK-induced PE and PAF-induced PE. This reduction was frequency dependent and was almost maximal at a stimulation frequency of 1 Hz. 6. In conclusion, BK-induced PE into the rat knee joint is dependent on the presence of intact sympathetic postganglionic nerve terminals innervating the joint capsule and not directly dependent on excitation of these neurons. However, electrical stimulation of the sympathetic neurons reduces the level of plasma extravasation, presumably because of vasoconstriction and decrease of blood flow through the joint capsule. These results indicate that peripheral action of inflammatory mediators on terminals of sympathetic neurons produces a facilitative effect on vascular permeability, whereas centrally generated excitation of these neurons, which depresses blood flow (vasoconstrictor function), decreases plasma extravasation. The effect on blood flow is presumed to occur at the precapillary resistance vessels by vesicular release of transmitter(s). The facilitative effect on permeability occurs at the venules and includes inflammatory-mediator-stimulated, non-vesicular-dependent production and release of a chemical substance (probably prostaglandin E2). Whether both functions are represented in the same class of sympathetic postganglionic neuron or in distinct ones remains to be elucidated.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of neural-immune dysregulation in the periphery in the development of age-associated immune dysfunctions;Translational Neuroimmunology, Volume 7;2023

2. Sympathetic Nervous System and Pain;The Senses: A Comprehensive Reference;2020

3. Effects on hemodynamic variables and echocardiographic parameters after a stellate ganglion block in 15 healthy volunteers;Autonomic Neuroscience;2016-05

4. Pathogenesis and Neuroendocrine Immunology;The Origin of Chronic Inflammatory Systemic Diseases and their Sequelae;2015

5. References;The Origin of Chronic Inflammatory Systemic Diseases and their Sequelae;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3