Nature and precision of temporal coding in visual cortex: a metric-space analysis

Author:

Victor J. D.1,Purpura K. P.1

Affiliation:

1. Department of Neurology and Neuroscience, Cornell University MedicalCollege, New York, New York 10021, USA.

Abstract

1. We recorded single-unit and multi-unit activity in response to transient presentation of texture and grating patterns at 25 sites within the parafoveal representation of V1, V2, and V3 of two awake monkeys trained to perform a fixation task. In grating experiments, stimuli varied in orientation, spatial frequency, or both. In texture experiments, stimuli varied in contrast, check size, texture type, or pairs of these attributes. 2. To examine the nature and precision of temporal coding, we compared individual responses elicited by each set of stimuli in terms of two families of metrics. One family of metrics, D(spike), was sensitive to the absolute spike time (following stimulus onset). The second family of metrics, D(interval), was sensitive to the pattern of interspike intervals. In each family, the metrics depend on a parameter q, which expresses the precision of temporal coding. For q = 0, both metrics collapse into the "spike count" metric D(Count), which is sensitive to the number of impulses but insensitive to their position in time. 3. Each of these metrics, with values of q ranging from 0 to 512/s, was used to calculate the distance between all pairs of spike trains within each dataset. The extent of stimulus-specific clustering manifest in these pairwise distances was quantified by an information measure. Chance clustering was estimated by applying the same procedure to synthetic data sets in which responses were assigned randomly to the input stimuli. 4. Of the 352 data sets, 170 showed evidence of tuning via the spike count (q = 0) metric, 294 showed evidence of tuning via the spike time metric, 272 showed evidence of tuning via the spike interval metric to the stimulus attribute (contrast, check size, orientation, spatial frequency, or texture type) under study. Across the entire dataset, the information not attributable to chance clustering averaged 0.042 bits for the spike count metric, 0.171 bits for the optimal spike time metric, and 0.107 bits for the optimal spike interval metric. 5. The reciprocal of the optimal cost q serves as a measure of the temporal precision of temporal coding. In V1 and V2, with both metrics, temporal precision was highest for contrast (ca. 10-30 ms) and lowest for texture type (ca. 100 ms). This systematic dependence of q on stimulus attribute provides a possible mechanism for the simultaneous representation of multiple stimulus attributes in one spike train. 6. Our findings are inconsistent with Poisson models of spike trains. Synthetic data sets in which firing rate was governed by a time-dependent Poisson process matched to the observed poststimulus time histogram (PSTH) overestimated clustering induced by D(count) and, for low values of q, D(spike)[q] and D(intervals)[q]. Synthetic data sets constructed from a modified Poisson process, which preserved not only the PSTH but also spike count statistics accounted for the clustering induced by D(count) but underestimated the clustering induced by D(spike)[q] and D(interval)[q].

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3