Two types of network oscillations in neocortex mediated by distinct glutamate receptor subtypes and neuronal populations

Author:

Flint A. C.1,Connors B. W.1

Affiliation:

1. Department of Neuroscience, Brown University, Providence, Rhode Island02912, USA.

Abstract

1. Two distinct forms of spontaneous synchronous oscillations were investigated with field potential recordings in slices of rat somatosensory cortex in vitro. 2. The first type of synchronous oscillation was activated by low extracellular [Mg2+] and had dominant frequencies of 8-12 Hz. It was abolished reversibly by the N-methyl-D-aspartate (NMDA) receptor antagonists D-2-amino-5-phosphonovaleric acid and was relatively unaffected by the non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). The duration of oscillatory events was increased by blocking gamma-aminobuturic acid-A receptors with bicuculline or by activating metabotropic glutamate receptors with trans-1-aminocyclopentane-1,3-dicarboxylic acid. 3. A second form of synchronous oscillation was activated by acute application of kainic acid (10 microM), had dominant frequencies of 1-5 Hz, and was abolished reversibly by DNQX. Low concentrations of domoic acid mimicked the effects of kainate, but alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid or quisqualic acid did not, suggesting a role for the GluR5-7 and KA1-2 glutamate receptor subunits. 4. Surgical isolation of cortical layers showed that spontaneous NMDA receptor-dependent oscillations originated within layer 5 exclusively, but kainate receptor-dependent oscillations were uniquely generated by neurons in layers 2/3. 5. Our results suggest that neocortical neurons in layers 2/3 and layer 5 can independently generate two distinct forms of rhythmic population activity, each dependent upon activation of a different subtype of glutamate receptor.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3