Amplitude and time course of spontaneous and evoked excitatory postsynaptic currents in bushy cells of the anteroventral cochlear nucleus

Author:

Isaacson J. S.1,Walmsley B.1

Affiliation:

1. Neuroscience Group, Faculty of Medicine, University of Newcastle, NewSouth Wales, Australia.

Abstract

1. Spontaneous and evoked excitatory postsynaptic currents (EPSCs) were recorded in slices of the rat anteroventral cochlear nucleus (AVCN) at the endbulb-bushy cell synaptic connection. 2. The amplitudes of alpha-amino-3-hydroxy-5-methy-4-isoxa-zolepropionic acid (AMPA)-receptor-mediated spontaneous EPSCs were large (54 +/- 6 pA, mean +/- SD; membrane potential = -70 mV, 22-25 degrees C) and, in the same cell, exhibited a very wide range of peak amplitudes (CM = 0.42 +/- 0.01, n - 15 cells). There was no significant correlation between rise times or decay time constants and the peak amplitudes of spontaneous EPSCs recorded in the same cell, demonstrating that electrotonic attenuation is not responsible for the large amplitude variability of spontaneous EPSCs. 3. Cyclothiazide, a potent blocker of AMPA-receptor desensitization, did not affect the amplitude of spontaneous EPSCs in AVCN bushy cells, suggesting that background desensitization of AMPA receptors is not significant in these cells. However, the decay time constant of spontaneous EPSCs was prolonged significantly (2.6-fold increase). In addition, cyclothiazide produced a marked increase (approximately 40%, n = 6 cells) in the frequency of spontaneous EPSCs, indicating a likely presynaptic site of action of this drug. 4. Cyclothiazide produced a small increase (approximately 10%, n = 7 cells) in the peak amplitude of the evoked endbulb EPSC, but this effect could be explained by the action of cyclothiazide to increase the decay time constant of the underlying quantal EPSCs in conjunction with the asynchrony of quantal transmitter release at the endbulb synapse. 5. These results indicate that neither electrotonic attenuation nor receptor desensitization are responsible for the wide range of peak amplitudes of spontaneous EPSCs in bushy cells. The large quantal variability therefore is likely to be due entirely to intrinsic fluctuations at each release site and site-to-site variability in the numbers of available receptors.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3