Parapodial swim muscle in Aplysia brasiliana. I. Voltage-gated membrane currents in isolated muscle fibers

Author:

Laurienti P. J.1,Blankenship J. E.1

Affiliation:

1. Marine Biomedical Institute, University of Texas Medical Branch,Galveston 77555-1069, USA.

Abstract

1. We describe voltage-gated membrane currents present in single muscle fibers dissociated from the parapodia (swim appendages) of the marine gastropod mollusk Aplysia brasiliana. These muscles are utilized in swimming behavior and their activity is modulated by serotonin. It is necessary to characterize the innate membrane properties of these fibers before defining the mechanism of action of serotonin in facilitating muscle fiber responses to motoneuron input. 2. Freshly dissociated parapodial muscle fibers appear by morphological criteria to be a uniform population with an average length of 240 microns and width of 15 microns. The average resting potential of all fibers is -56 mV and the fibers contract in response to elevated extracellular K+ concentration or intracellular depolarization. 3. Muscle membrane currents were studied by single-electrode voltage clamp with the use of intracellular microelectrodes. The muscle fibers were found to fall into one of two groups, which we have classified as type I and type II, the former having two voltage-gated outward K+ currents and a small, less frequently seen Ca2+ current. Type II fibers display the same two K+ currents, a prominent Ca2+ current and, in addition, two Ca(2+)-dependent K+ currents, the latter described in a companion paper. 4. Membrane currents were characterized using 1-s voltage ramps and several voltage step protocols, including ones for analyzing K+ tail currents. Both fiber types had similar current-voltage relationships and input resistance of > or = 60 - 300 M omega. The current-voltage curves were quite flat at potentials more negative than resting potential, with no evidence of a voltage-gated, inwardly rectified (anomalous) potassium current. Outward K+ currents and a Ca2+ current were seen to appear at a threshold of near -40 mV. 5. Because type I fibers had no apparent Ca(2+)-activated K+ currents, the two voltage-gated outward K+ currents were most conveniently studied in these fibers. Compared with type II fibers, type I fibers display a relatively slowly rising total outward current with depolarization comprised of a delayed rectifier current and a transient A current (IA). These two currents were distinguished by slightly different thresholds for activation, by inactivation properties of IA, and by their partially selective sensitivity to tetraethylammonium and 4-aminopyridine. 6. Although contraction of all parapodial muscle fibers is dependent on extracellular Ca2+, an inward Ca2+ current was detected in only about one third of type I fibers, and the current was small. A similar and more prominent Ca2+ current was observed in all type II fibers and was analyzed more fully in these cells. This current had an activation threshold near -40 mV and peaked between -10 and 0 mV. It displayed little inactivation with depolarization steps of 80-200 ms, was blocked in the absence of Ca2+ or in the presence of Co2+, and was present, although not enhanced, when Ba2+ was substituted for Ca2+. This current was completely blocked by the dihydropyridine nifedipine (10 microM), and is therefore similar to an L-type Ca2+ current. 7. The voltage-gated membrane currents described in parapodial muscle fibers provide a framework for analyzing possible mechanisms by which serotonin facilitates neuromuscular output. This facilitatory mechanism will provide a better understanding of the role of serotonin in controlling locomotion.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3