Octopamine induces steady-state reflex reversal in crayfish thoracic ganglia

Author:

Skorupski P.1

Affiliation:

1. Department of Physiology, University of Bristol, School of VeterinaryScience, United Kingdom.

Abstract

1. This paper investigates the effect of octopamine on spontaneous and reflex motor output of crayfish leg motor neurons. Octopamine modulated spontaneous activity, both rhythmic and tonic, and dramatically modulated the pattern of reflex motor output elicited by stimulating identified proprioceptors of the basal limb. 2. Spontaneous reciprocal motor patterns, involving alternating bursts of promotor and remotor motor neuron activity, were reversibly abolished by octopamine. The threshold concentration for this effect was approximately 1 microM. 3. At concentrations greater than approximately 10 microM octopamine inhibited spontaneous promotor nerve activity in both bursting and nonbursting preparations. In some experiments promotor inhibition was correlated with the induction of tonic remotor nerve activity. The EC50 for complete inhibition of promotor nerve activity by octopamine was 20-30 microM. 4. Reflexes mediated by two basal limb proprioceptors, the thoracocoxal muscle receptor organ (TCMRO; which signals leg promotion) and the thoracocoxal chordotonal organ (TCCO; which signals leg remotion) were analyzed in a number of promotor and remotor motor neurons. In both cases assistance reflexes (excitation of promotors by the TCCO and remotors by the TCMRO) were restricted to subgroups of the motor pool. Among remotor motor neurons, the first two units recruited during bursts of spontaneous activity were members of the assistance reflex group (group 1). A third unit, sometimes recruited during more intense spontaneous bursts, was excited by TCCO stimulation and was therefore a member of the resistance reflex group (group 2). Other resistance group remotors were also excited by the TCCO, but this input normally remained subthreshold. 5. Stimulation of the TCCO afferent nerve elicited excitatory postsynaptic potentials (EPSPs) in group 2 (resistance group) remotor motor neurons at a latency compatible with a monosynaptic connection. The same stimulation excited group 1 (assistance group) promotor motor neurons, but at a greater and more variable latency. Thus the remotor resistance reflex from the TCCO is probably monosynaptic, but the promotor assistance reflex, also elicited by TCCO stimulation, is likely to be di- or polysynaptic. Assistance group (group 1) remotor motor neurons are inhibited by mechanical stimulation of the TCCO, or electrical stimulation of its nerve. 6. Octopamine had selective effects on individual remotor units. First, assistance group remotor motor neurons were affected in two ways. One unit was inhibited, so that reflex spiking in response to TCMRO stimulation was abolished. A second unit was not inhibited, but its reflex response mode changed, so that instead of responding to TCMRO input with an assistance reflex, it responded to TCCO input with a resistance reflex. Second, among motor neurons that normally respond to TCCO input with resistance reflexes, these responses were enhanced by octopamine. 7. Promotor motor neurons were inhibited by octopamine and reflex responses were also affected selectively. Responses to TCCO input (assistance reflexes) were abolished; whereas, responses to TCMRO input (resistance reflexes) were relatively less affected. 8. Intracellular recordings revealed that the majority of remotor motor neurons depolarized in the presence of octopamine. In preparations where these could be classified on the basis of TCMRO/ TCCO inputs, all were identified as group 2 (resistance group). A minority of remotor motor neurons were hyperpolarized by octopamine. All of these were identified as group 1 (assistance group), with strong TCMRO input. 9. The majority of promotor motor neurons were depolarized by octopamine. This depolarization was nevertheless inhibitory since it reversed slightly positive to rest and was associated with a substantial fall in inp

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3