Calcium-independent actions of alpha-latrotoxin on spontaneous and evoked synaptic transmission in the hippocampus

Author:

Capogna M.1,Gahwiler B. H.1,Thompson S. M.1

Affiliation:

1. Brain Research Institute, University of Zurich, Switzerland. capogna@hifo.unizh.ch

Abstract

1. The black widow spider venom component, alpha-latrotoxin (alpha-LTx) (< 0.5 nM), increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) in hippocampal CA3 pyramidal cells 14-fold, without changing their amplitude. 2. This action of alpha-LTx was not affected by application of Ca(2+)-free/ethylene glycol-bis(b-aminoethyl ether)-N,N,N',N'-tetraacetic acid-containing saline, 100 microM Cd2+, or 50 microM Gd3+. The increase in mEPSC frequency was thus not due to an influx of Ca2+ into the axon terminal via voltage-dependent Ca2+ channels or alpha-LTx-induced pores. 3. alpha-LTx did not increase spontaneous release when synaptic transmission had been impaired by botulinum toxin/F. 4. alpha-LTx reduced the amplitude of EPSCs, elicited with stimulation of mossy fibers, without affecting paired-pulse facilitation. 5. The Ca2+ ionophore ionomycin (2–2.5 microM) also enhanced the frequency of mEPSCs, but unlike alpha-LTx, potentiated evoked EPSCs and reduced paired-pulse facilitation. Application of N-methyl-D-aspartate elicited a high frequency of Ca(2+)-dependent, tetrodotoxin-sensitive spontaneous EPSCs, but did not affect evoked EPSC amplitude. Agents that stimulate vesicular release by increasing presynaptic Ca2+ influx thus do not mimic the alpha-LTx-induced depression of evoked EPSCs. 6. We conclude that entry of Ca2+ into presynaptic axon terminals is not responsible for the effects of low concentrations of alpha-LTx on either spontaneous or evoked transmitter release in the hippocampus. 7. Potential presynaptic mechanisms that could mediate the opposing actions of alpha-LTx on spontaneous and evoked transmitter release in the hippocampus (i.e., alpha-LTx-induced ionic pores, depletion of synaptic vesicles, actions on exocytotic proteins) are discussed.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3