Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei

Author:

Morishita W.1,Sastry B. R.1

Affiliation:

1. Department of Pharmacology and Therapeutics, University of BritishColumbia, Vancouver, Canada.

Abstract

1. The mechanisms underlying long-term depression (LTD) of gamma-aminobutyric acid-A (GABAA) receptor-mediated synaptic transmission induced by 10-Hz stimulation of the inhibitory afferents were investigated using perforated and whole cell voltage-clamp recordings from neurons of the deep cerebellar nuclei (DCN). 2. LTD of inhibitory postsynaptic currents (IPSCs) was reliably induced when the 10-Hz stimulation was delivered under current-clamp conditions where the postsynaptic neuronal membrane was allowed to depolarize. 3. Currents elicited by local applications of the GABAA receptor agonist, 4,5,6,7-tetrahydroisoxazolo [5,4-c]pyridin-3-ol hydrochloride (THIP) were also depressed during LTD. 4. LTD could be induced heterosynaptically and did not require the activation of GABAA receptors during the 10-Hz stimulation. 5. In cells loaded with QX-314 and superfused with media containing 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2-amino-5-phosphonovaleric acid (APV), a series of depolarizing pulses (50 mV, 200 ms) induced a sustained depression of the IPSC. However, this was not observed in cells recorded with high bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA)-containing pipette solutions or when they were exposed to the L-type Ca2+ channel antagonist, nitrendipine. 6. The 10-Hz-induced LTD was also inhibited by BAPTA and was significantly reduced when DCN cells were loaded with microcystin LR or treated with okadaic acid, both inhibitors of protein phosphatases. 7. These results indicate that increases in postsynaptic [Ca2+] and phosphatase activity can reduce the efficacy of GABAA receptor-mediated synaptic transmission.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3