Similarity of granular-induced inhibitory periods in pairs of neighboring mitral/tufted cells

Author:

Buonviso N.1,Chaput M. A.1,Berthommier F.1

Affiliation:

1. Centre National de la Recherche Scientifique-Universite Lyon 1,France.

Abstract

1. Neighboring mitral/tufted cells have been previously shown to present temporal correlations of their firings related to the respiratory rhythm, particularly under odor stimulation. This occurs despite the existence of a powerful inhibitory control exerted by granule cells onto mitral/tufted cells. In the present study, we hypothesized that neighboring mitral cells can present granular induced inhibitory periods with similar latencies and durations and that such a similarity would preserve them from a possible suppression of their temporal correlations. 2. To test this hypothesis, we analyzed the latencies and durations of the inhibitory periods induced by granular activation in pairs of simultaneously recorded neighboring mitral cells. The activation of granule cells was achieved by electrical stimulation of the different pathways known to directly activate granule cells [lateral olfactory tract (LOT), anterior limb of the anterior commissure (AC), and piriform cortex (PC)]. Data from this group were compared with those of a control group composed of distant cells also recorded simultaneously. 3. Results first show that the latencies to onset of inhibition or to recovery were more frequently similar in neighboring cells than in control cells and that this similarity was enhanced by odor stimulation. Second, the probability that two cells exhibit similar inhibitory periods (i.e., similar latencies to both onset and to recovery) in response to electrical stimulation of LOT, AC, or PC was significantly higher in neighboring than in control cells. Third, only neighboring cells were found to present similar inhibitory periods in response to the stimulation of all of the three structures. 4. Granular activation was also found to modify the temporal patterns of individual mitral cells. However, although these patterns were not systematically modified similarly in neighboring mitral cells, they remained perfectly synchronized with zero delay if they were already synchronous without electrical stimulation. On the contrary, if patterns were spontaneously uncorrelated, electrical stimulation never produced a synchronization of their firings, even if their temporal relationships could be profoundly modified. 5. These results show that neighboring mitral cells can receive granular-induced inhibition with similar latencies and durations with a probability much higher than control cells. Such similarities allow neighboring mitral cells to preserve their temporal correlation despite the powerful inhibitory input from granule cells. Functional hypotheses about the role of the cortical feedback projections onto the bulb are discussed.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3