Effects of somatosensory and parallel-fiber stimulation on neurons in dorsal cochlear nucleus

Author:

Davis K. A.1,Miller R. L.1,Young E. D.1

Affiliation:

1. Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA.

Abstract

1. Single units and evoked potentials were recorded in the dorsal cochlear nucleus (DCN) of paralyzed decerebrate cats in response to electrical stimulation at two sites: 1) in the somatosensory dorsal column nuclei (together called MSN below for medullary somatosensory nuclei), which activates mossy-fiber inputs to granule cells in superficial DCN, and 2) on the free surface of the DCN, which activates granule cell axons (parallel fibers) directly. The goal was to evaluate hypotheses about synaptic interactions in the cerebellum-like circuitry of the superficial DCN. A four-pulse facilitation paradigm was used (50-ms interpulse interval); this allows identification of three components of the responses of DCN principal cells (type IV units) to these stimuli. The latencies of the response components were compared with the latency of the evoked potential in DCN, which signals the arrival of the parallel fiber volley at the recording site. 2. The first component is a short-latency inhibitory response; this component is seen only with MSN stimulation and is seen almost exclusively in units also showing the second component, the transient excitatory response. The short-latency inhibitory component precedes the evoked potential. No satisfactory explanation for the short-latency component can be given at present; it most likely reflects a fast-conducting inhibitory input that arrives at the type IV unit before the slowly conducting parallel fibers. 3. The second component is a transient excitatory response; this component is seen with both MSN and parallel fiber stimulation; it is weak and appears to be masked easily by the inhibitory response components. The excitatory component occurs at the same latency as the evoked potential and probably reflects direct excitation of principal cells by granule cell axons. The excitatory component is seen in about half the type IV units for both stimulating sites. With MSN stimulation, the lack of excitation in some units suggests a heterogeneity of cochlear granule cells, with some carrying somatosensory information and some not carrying this information; with parallel fiber stimulation, excitation probably requires the stimulating and recording electrodes to be lined up on the same “beam” of parallel fibers. 4. The third component is a long-lasting inhibitory response that is observed in virtually all type IV units with both MSN and parallel-fiber stimulation; its latency is longer than the evoked potential. Evidence suggests that it is produced by inhibitory input from cartwheel cells. The appearance of this inhibitory component in almost all type IV units can be accounted for by the considerable spread of cartwheel-cell axons in the direction perpendicular to the parallel fibers. 5. The evoked potential and all three components of the unit response vary systematically in size over the four pulses of the electrical stimulus. These results can be accounted for by two phenomena: 1) a facilitation of the granule cell synapses on all cell types that produces a steadily growing response through the four pulses, resembles presynaptic facilitation, and is seen with both MSN and parallel-fiber stimulation; and 2) a strong reduction in the granule cell response between the first and second pulse for MSN stimulation only. This reduction probably occurs presynaptically in the glomerulus or in the granule cell itself and could reflect inhibitory inputs. 6. The response components described above are seen in type IV units recorded in both the fusiform-cell and deep layers of the DCN; this suggests that both pyramidal and giant cells are activated similarly. The simplest interpretation is that both principal cell types are activated by the cerebellum-like circuitry in superficial DCN. Alternatively, because giant cells appear to make limited contact with the granule-cell circuits of superficial DCN, this finding may suggest the existence of currently undescribed granule cell circuits in deep DCN that are si

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3