Variability of extracellular spike waveforms of cortical neurons

Author:

Fee M. S.1,Mitra P. P.1,Kleinfeld D.1

Affiliation:

1. Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA.

Abstract

1. Here we study the variability in extracellular records of action potentials. Our work is motivated, in part, by the need to construct effective algorithms to classify single-unit waveforms from multiunit recordings. 2. We used microwire electrode pairs (stereotrodes) to record from primary somatosensory cortex of awake, behaving rat. Our data consist of continuous records of extracellular activity and segmented records of extracellular spikes. Spectral and principal component techniques are used to analyze mean single-unit wave-forms, the variability between different instances of a single-unit waveform, and the underlying background activity. 3. The spectrum of the variability between different instances of a single-unit waveforms is not white, and falls off above 1 kHz with a frequency dependence of roughly f-2. This spectrum is different from that of the mean spike waveforms, which falls off roughly as f-4, but is essentially identical with the spectrum of background activity. The spatial coherence of the variability on the 10-micron scale also falls off at high frequencies. 4. The variability between different instances of a single-unit waveform is dominated by a relatively small number of principal components. As a consequence, there is a large anisotropy in the cluster of the spike waveforms. 5. The background noise cannot be represented as a stationary Gaussian random process. In particular, we observed that the spectrum changes significantly between successive 20-ms intervals. Furthermore, the total power in the background activity exhibits larger fluctuations than is consistent with a stationary Gaussian random process. 6. Roughly half of the single-unit spike waveforms exhibit systematic changes as a function of the interspike interval. Although this results in a non-Gaussian distribution in the space of waveforms, the distribution can be modeled by a scalar function of the interspike interval. 7. We use a set of 44 mean single-unit waveforms to define the space of differences between spike waveforms. This characterization, together with that of the background activity, is used to construct a filter that optimizes the detection of differences between single-unit waveforms. Further, an information theoretic measure is defined that characterizes the detectability.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3