Differential modulation of disynaptic cutaneous inhibition and excitation in ankle flexor motoneurons during fictive locomotion

Author:

Degtyarenko A. M.1,Simon E. S.1,Burke R. E.1

Affiliation:

1. Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892–4455, USA.

Abstract

1. Intracellular recording from extensor digitorum longus (EDL) and tibialis anterior (TA) alpha-motoneurons during fictive locomotion was used to examine patterns of modulation of oligosynaptic postsynaptic potentials (PSPs) produced by electrical stimulation of the cutaneous superficial peroneal (SP) and medial plantar (MPL) nerves in unanesthetized, decerebrate adult cats. 2. In all 20 EDL motoneurons studied, electrical stimulation of the SP nerve with single pulses at about twice threshold for the most excitable fibers in the nerve (2xT) produced either no synaptic potentials or relatively small oligosynaptic excitatory or inhibitory PSPs (EPSPs or IPSPs), both at rest and during the extension phase of fictive stepping. However, at the onset of the flexion phase large, presumably disynaptic IPSPs (central latencies 1.7–2.0 ms) appeared in the SP responses. These IPSPs usually decreased in amplitude later in the flexion phase despite maintained membrane depolarization. 3. In most (7/8) TA motoneurons, SP stimulation produced oligosynaptic EPSPs at rest and during the extension phase of fictive stepping. These EPSPs were suppressed during flexion in a majority of TA cells studied (5/8) but no clearly disynaptic IPSPs were found in any TA motoneuron. 4. In most EDL and TA motoneurons, stimulation of the MPL nerve produced oligosynaptic EPSPs at rest and during the extension phase, most with latencies in the presumably disynaptic range (< or = 2.0 ms). When present, these MPL EPSPs were suppressed throughout the flexion phase of stepping in almost all EDL (18/ 20) and TA (6/8) motoneurons examined. 5. The available evidence suggests that these modulation effects during fictive stepping are due primarily to convergence of control information from the spinal central pattern generator (CPG) for locomotion onto segmental interneurons in the oligosynaptic cutaneous pathways. 6. These observations extend the evidence for precise differential control of transmission through cutaneous reflex pathways in the cat hindlimb by the locomotor CPG. Taken together with earlier evidence about locomotor modulation of cutaneous PSPs in flexor digitorum longus (FDL) motoneurons, the data suggest that cutaneous information from the dorsal surface of the foot, carried in part by the SP nerve, projects to digit motoneurons (FDL and EDL) through discrete sets of last-order interneurons that also receive powerful excitation from the locomotor CPG during flexion. In contrast, the last-order interneurons that convey excitatory information from the SP nerve to at least some TA motoneurons are inhibited by the CPG during flexion. 7. Another contrast resides in the fact that oligosynaptic cutaneous excitation from the plantar surface of the foot, via the MPL nerve, is suppressed in FDL, EDL, and TA motoneurons during the flexion phase of locomotion. The available information is consistent with the possibility that MPL effects may be delivered to these motor nuclei by common interneurons. 8. We suggest an interneuronal circuitry that could account for these observations and discuss possible functional implications of modulation of these sensory pathways during locomotion.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3