Giant, TTX-insensitive, inhibitory postsynaptic currents in cultured rat spinal cord and medullary neurons

Author:

Lewis C. A.1,Faber D. S.1

Affiliation:

1. Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia, USA.

Abstract

1. In whole cell patch-clamp studies on cultured rat embryonic spinal cord and medullary neurons bathed in tetrodotoxin, DL-2-amino-5-phosphonovaleric acid, and 6-cyano-7-nitroquinoxaline-2,3-dione, large and long-lasting spontaneous inhibitory postsynaptic currents were occasionally recorded. The amplitudes of these events were 1 order of magnitude larger than those of spontaneous miniature inhibitory postsynaptic currents. Because these large currents had reduced amplitudes in calcium-free saline and in solutions containing glycinergic or GABAergic antagonists, we conclude that they were probably produced by large and prolonged release of glycine and/or 4-amino-n-butyric acid (GABA), which subsequently bind to their postsynaptic receptors. 2. The frequency of spontaneous miniature postsynaptic currents increased dramatically during the long, slow decay phase of these large postsynaptic currents. Considering the requirement for extracellular calcium for the occurrence of these large responses, we hypothesize that this increased frequency reflected an increased intracellular calcium concentration in the presynaptic terminal. 3. Similar evidence for large inhibitory postsynaptic currents and prolonged transmitter release was observed in cell-attached patches, which also exhibited the smaller, spontaneous miniature inhibitory postsynaptic currents, suggesting that these large events are properties of single synaptic terminals. 4. A comparison of the properties of these large inhibitory postsynaptic currents recorded in whole cell mode or cell-attached patches showed no statistically significant differences. The overall mean values, then, are 13.9 +/- 1.6 (SE) ms and 4.5 +/- 0.5 s for the 10-90% rise time and duration, respectively. Furthermore, these large events had amplitudes that were 11-fold larger than the mean amplitude of the miniatures (i.e., mean amplitude ratio of 10.8 +/- 0.5). 5. Periodic large increases in the frequency of spontaneous miniature inhibitory postsynaptic currents occurred in both cell-attached patches and in the whole cell mode, and these increases were only sometimes associated with the large inhibitory postsynaptic currents. The rhythmicity in both recording configurations had similar temporal characteristics, with average interburst intervals of 5 and 12–14 s. Presumably these bursts of spontaneous miniature postsynaptic currents reflected periodic oscillations in the Ca2+ concentration in presynaptic terminals. 6. Both the probability and the frequency of occurrence of large inhibitory postsynaptic currents doubled during the 7-day period of time in culture when experiments were performed, suggesting that these large currents may play a role during development.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3