Sensory feedback and central afferent interaction in the muscle receptor organ of the crab, Carcinus maenas

Author:

Wildman M.1,Cannone A.1

Affiliation:

1. Department of Zoology, University of the Witwatersrand, SouthAfrica.

Abstract

1. An interaction exists between two proprioceptive afferent neurons innervating the thoracic-coxal muscle receptor organ (TCMRO) of the crab, Carcinus maenas. Intracellular recordings were made from the extraganglionic regions of the afferents in order to characterize this interaction and its effects on sensory feedback. 2. A current-induced depolarization of the nonspiking T fiber of the TCMRO results in a depolarization of the P fiber, a small-diameter (7 microns) neuron innervating the same receptor. This interaction is graded in amplitude, and may result in a single action potential being superimposed on the graded response of the P fiber. A hyperpolarization of the T fiber has a smaller effect on the P fiber than a depolarization of similar amplitude. The interaction is rectified in a T- to P-fiber direction, and has a minimum central delay of approximately 3.6 ms. 3. The site of the interaction between the afferents is situated centrally, within the thoracic ganglion. Action potentials evoked in the P fiber by a T-fiber depolarization propagate actively and antidromically to the periphery. 4. Central modulation of the interaction occurs, because the amplitude of a T-fiber-induced depolarization is reduced in the P fiber during centrally generated spontaneous bursts of activity in the motoneurons of basal leg muscles. 5. Because of the interaction between T and P fibers, action potentials recorded from the peripheral portion of the P fiber during receptor stretch may be either orthodromic, resulting directly from the effects of the stretch on the sensory endings of the P fiber, or antidromic, resulting from the central input from the T fiber. 6. The T- to P-fiber interaction may serve to extend the dynamic sensitivity range of the P fiber, in particular by amplifying its sensory response at short receptor lengths and low velocities of stretch.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensory biology and behaviour;Ecophysiology of the European Green Crab (Carcinus Maenas) and Related Species;2024

2. Invertebrate preparations and their contribution to neurobiology in the second half of the 20th century;Brain Research Reviews;2007-04

3. In Vivo Analysis of Proprioceptive Coding and Its Antidromic Modulation in the Freely Behaving Crayfish;Journal of Neurophysiology;2005-08

4. Characterization of central axon terminals of putative stretch receptors in leeches;The Journal of Comparative Neurology;2005

5. Adaptive motor control in crayfish;Progress in Neurobiology;2001-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3