Corticomotoneuronal contribution to the fractionation of muscle activity during precision grip in the monkey

Author:

Bennett K. M.1,Lemon R. N.1

Affiliation:

1. Sobell Department of Neurophysiology, Institute of Neurology, London,United Kingdom.

Abstract

1. During independent finger movements, the intrinsic muscles of the hand show a fractionated pattern of activity in which the timing and amplitude of electromyographic (EMG) activity varies considerably from one muscle to another. It has been suggested that, in the macaque monkey, corticomotoneuronal (CM) cells that produce postspike facilitation (PSF) of EMG in these muscles contribute to this fractionation. To test this hypothesis, we have investigated the relationship between the pattern of PSF exerted by a CM cell and the pattern of activity shown by the cell and by its target muscles. 2. The activity of 15 identified CM cells was recorded from two monkeys that performed a precision grip task. Spike-triggered averaging of rectified EMG during the hold period of this task showed that each cell produced PSF in at least two intrinsic hand muscles. 3. Segments of data were selected from the initial movement period of the task in which the EMG activity in one target muscle was substantially greater than that of the other, and the mean firing rate of each CM cell was determined for these periods. 4. CM cells showed bursts of activity in the movement period. Most of them (13/15) had a significantly (P < 0.001) higher firing rate when one of its target muscles was more active than the other. For nine of these cells (identified as set A), this muscle was the one receiving the larger PSF. In four cases (set B), the reverse was true. Two cells (set C), which produced PSF of equal size in their target muscles, showed no change in firing rate across the periods of fractionated EMG activity. 5. All set A and set B cells fired at significantly (P < 0.001) higher rates during the movement period, in association with fractionation of EMG activity, than in the hold period, in which a cocontracted pattern of muscle activity was observed. 6. There were pronounced differences in the strength of PSF exerted by the CM cells on their target muscles during the fractionation periods. One CM cell exerted PSF of a muscle during one period of fractionation, but postspike suppression of the same muscle during the other period. 7. It is suggested that changes in the firing rate of a CM cell and in the degree of facilitation it exerts could both contribute to the fractionation of activity in its target muscles. Cells of set A appear to be specifically recruited in a manner that directly reflects the pattern of facilitation they exert on the sampled target muscles. These results may explain why the CM system is so important for the performance of relatively independent finger movements.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3