Mechanisms of oscillation in dynamic clamp constructed two-cell half-center circuits

Author:

Sharp A. A.1,Skinner F. K.1,Marder E.1

Affiliation:

1. Volen Center for Complex Systems, Brandeis University, Waltham,Massachusetts 02254-9110, USA.

Abstract

1. The dynamic clamp was used to create reciprocally inhibitory two-cell circuits from pairs of pharmacologically isolated gastric mill neurons of the stomatogastric ganglion of the crab, Cancer borealis. 2. We used this system to study how systematic alterations in intrinsic and synaptic parameters affected the network behavior. This has previously only been possible in purely computational systems. 3. In the absence of additional hyperpolarization-activated inward current (IH), stable half-center oscillatory behavior was not observed. In the presence of additional IH, a variety of circuit dynamics, including stable half-center oscillatory activity, was produced. 4. Stable half-center behavior requires that the synaptic threshold lie within the voltage envelope of the slow wave oscillation. 5. Changes in the synaptic threshold produce dramatic changes in half-center period. As predicted by previous theoretical work, when the synaptic threshold is depolarized, the period first increases and then decreases in a characteristic inverted U-shaped relationship. Analysis of the currents responsible for the transition between the active and inhibited neurons shows that the mechanism of oscillation changes as the synaptic threshold is varied. 6. Increasing the time constant and the conductance of the inhibitory synaptic current increased the period of the half-center oscillator. 7. Increasing the conductance of IH or changing the voltage dependence of IH can either increase or decrease network period, depending on the initial mode of network oscillation. A depolarization of the activation curve causes the network to respond in a similar fashion as increasing the conductance of IH. 8. Many neuromodulatory substances are known to alter synaptic strength and the conductance and voltage dependence of IH, parameters we studied with the dynamic clamp. To understand the response of the network to modulation of a single parameter, it is necessary to understand the nature of the altered conductance and how it interacts with the other conductances in the system.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3