Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey

Author:

Gallant J. L.1,Connor C. E.1,Rakshit S.1,Lewis J. W.1,Van Essen D. C.1

Affiliation:

1. Division of Biology, California Institute of Technology, Pasodena91125, USA.

Abstract

1. We studied the responses of 103 neurons in visual area V4 of anesthetized macaque monkeys to two novel classes of visual stimuli, polar and hyperbolic sinusoidal gratings. We suspected on both theoretical and experimental grounds that these stimuli would be useful for characterizing cells involved in intermediate stages of form analysis. Responses were compared with those obtained with conventional Cartesian sinusoidal gratings. Five independent, quantitative analyses of neural responses were carried out on the entire population of cells. 2. For each cell, responses to the most effective Cartesian, polar, and hyperbolic grating were compared directly. In 18 of 103 cells, the peak response evoked by one stimulus class was significantly different from the peak response evoked by the remaining two classes. Of the remaining 85 cells, 74 had response peaks for the three stimulus classes that were all within a factor of 2 of one another. 3. An information-theoretic analysis of the trial-by-trial responses to each stimulus showed that all but two cells transmitted significant information about the stimulus set as a whole. Comparison of the information transmitted about each stimulus class showed that 23 of 103 cells transmitted a significantly different amount of information about one class than about the remaining two classes. Of the remaining 80 cells, 55 had information transmission rates for the three stimulus classes that were all within a factor of 2 of one another. 4. To identify cells that had orderly tuning profiles in the various stimulus spaces, responses to each stimulus class were fit with a simple Gaussian model. Tuning curves were successfully fit to the data from at least one stimulus class in 98 of 103 cells, and such fits were obtained for at least two classes in 87 cells. Individual neurons showed a wide range of tuning profiles, with response peaks scattered throughout the various stimulus spaces; there were no major differences in the distributions of the widths or positions of tuning curves obtained for the different stimulus classes. 5. Neurons were classified according to their response profiles across the stimulus set with two objective methods, hierarchical cluster analysis and multidimensional scaling. These two analyses produced qualitatively similar results. The most distinct group of cells was highly selective for hyperbolic gratings. The majority of cells fell into one of two groups that were selective for polar gratings: one selective for radial gratings and one selective for concentric or spiral gratings. There was no group whose primary selectivity was for Cartesian gratings. 6. To determine whether cells belonging to identified classes were anatomically clustered, we compared the distribution of classified cells across electrode penetrations with the distribution that would be expected if the cells were distributed randomly. Cells with similar response profiles were often anatomically clustered. 7. A position test was used to determine whether response profiles were sensitive to precise stimulus placement. A subset of Cartesian and non-Cartesian gratings was presented at several positions in and near the receptive field. The test was run on 13 cells from the present study and 28 cells from an earlier study. All cells showed a significant degree of invariance in their selectivity across changes in stimulus position of up to 0.5 classical receptive field diameters. 8. A length and width test was used to determine whether cells preferring non-Cartesian gratings were selective for Cartesian grating length or width. Responses to Cartesian gratings shorter or narrower than the classical receptive field were compared with those obtained with full-field Cartesian and non-Cartesian gratings in 29 cells. Of the four cells that had shown significant preferences for non-Cartesian gratings in the main test, none showed tuning for Cartesian grating length or width that would account for their non-Cartesian res

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 369 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3