Differential distribution of potassium channels in acutely demyelinated, primary-auditory neurons in vitro

Author:

Davis R. L.1

Affiliation:

1. Department of Otolaryngology, Harvard Medical School, Eaton-PeabodyLaboratory, Massachusetts Eye and Ear Infirmary, Boston 02114, USA.

Abstract

1. Single-channel recordings of potassium channel activity were made from two populations of primary-auditory neurons maintained in tissue culture. The saccular nerve, which is the auditory component of the eighth cranial nerve in goldfish, was separated into two branches according to its peripheral innervation pattern. Neurons which innervated the rostral saccular macula corresponded to a class of cells that showed spike frequency adaptation; whereas, neurons which innervated the caudal macula were consistent with another type of cell that demonstrated bursting spontaneous firing patterns in vivo. Both somatic and internodal axonal membranes from each of these neuronal classes were studied after acute removal of the myelin sheath by microdissection. 2. Dye injections were used to discriminate neuronal from myelin membrane. After successful removal of the myelin, patch electrodes containing Lucifer yellow were used to fill a neuron and reveal its morphology within the myelin sheath. Patches on myelin led to filling of Schwann cells that surrounded the neuron. 3. Four kinds of potassium channels were observed and characterized according to unitary conductance, inactivation, and sensitivity to internal calcium. Three voltage-dependent K+ channel types were found on the somatic and axonal membrane of the two neuronal populations. Two channel types showed voltage-dependent inactivation and had average conductances of 32 and 19 pS, each with distinctive subconductance states. The third type of channel activity had an estimated conductance of 12 pS and was noninactivating. 4. The fourth type of channel was the Ca2(+)-activated K+ channel (k(Ca)), which was classified by the dependence of its activity on the calcium concentration at its cytoplasmic surface. Unlike the other three potassium channel types, this kind of channel was found exclusively on neurons that innervated the caudal sensory epithelium. As with the other kinds of potassium channels, it was found on both somatic and axonal internodal membranes.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3