Electrogenic pump and a Ca(2+)- dependent K+ conductance contribute to a posttetanic hyperpolarization in lamprey sensory neurons

Author:

Parker D.1,Hill R.1,Grillner S.1

Affiliation:

1. Nobel Institute of Neurophysiology, Department of Neuroscience,Karolinska Institute, Stockholm, Sweden.

Abstract

1. Tetanic stimulation of lamprey sensory dorsal cells resulted in a posttetanic hyperpolarization (PTH). The amplitude and duration of the PTH were dependent on the stimulus duration and frequency. The PTH was not reversed at membrane potentials negative to -100 mV, whereas the afterhyperpolarization following single action potentials reversed at approximately -85 mV. There was also a biphasic effect on the input resistance during the PTH, with an early reduction that recovered to control before the PTH had decayed. 2. The amplitude and duration of the PTH were increased in Ringer solution containing tetraethylammonium and 4-aminopyridine, both of which broadened single action potentials, but were reduced after intracellular injection of Cs+. Ca(2+)-free Ringer solution, Cd2+, and Co2+ also reduced the PTH, suggesting the involvement of a Ca(2+)-dependent K+ conductance. However, the PTH was not reduced in Ba2+ Ringer solution, or by the Ca(2+)-dependent K+ channel antagonists apamin and charybdotoxin. 3. The cardiac glycoside ouabain reduced the amplitude and duration of the PTH, as did substitution of Na+ with choline or Li+. K(+)-free Ringer solution also reduced the PTH, whereas high-K+ Ringer solution had more variable effects. The amplitude and duration of the PTH were also dependent on temperature. These results support the involvement of an ouabain-sensitive Na-K pump in the PTH. 4. The PTH was reduced by the tachykinins substance P and physalaemin, and by 5-hydroxytryptamine, which blocks apamin-sensitive Ca(2+)-dependent K+ channels in the lamprey. However, gamma-aminobutyric acid, which has been reported to reduce a Ca(2+)-dependent K+ conductance in the dorsal cells, did not reduce the PTH. 5. These results suggest that a Ca(2+)-dependent K+ conductance and an Na-K electrogenic pump underlie the PTH. The PTH reduces the excitability of the dorsal cells, suggesting that it may act as a mechanism to gate sensory information entering the spinal cord.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3