Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex

Author:

Matsuzaka Y.1,Tanji J.1

Affiliation:

1. Department of Physiology, Tohoku University School of Medicine,Sendai, Japan.

Abstract

1. To understand roles played by two cortical motor areas, the presupplementary motor area (pre-SMA) and supplementary motor area (SMA), in changing planned movements voluntarily, cellular activity was examined in two monkeys (Macaca fuscata) trained to perform an arm-reaching task in which they were asked to press one of two target buttons (right or left) in three different task modes. 2. In the first mode (visual), monkeys were visually instructed to result and press either a right or left key in response to a forth coming trigger signal. In the second mode (stay), monkeys were required to wait for the trigger signal and press the same target key as pressed in preceding trials. In the third mode (shift), a 50 Hz auditory cue instructed the monkey to shift the target of the future reach from the previous target to the previous nontarget. 3. While the monkeys were performing this task, we recorded 399 task-related cellular activities from the SMA and the pre-SMA. Among them, we found a group of neurons that exhibited activity changes related specifically to shift trials (shift-related cells). The following properties characterized these 112 neurons. First, they exhibited activity changes after the onset of the 50-Hz auditory cue and before the movement execution when the monkeys were required to change the direction of forthcoming movement. Second, they were not active when the monkeys pressed the same key without changing the direction of the movements. Third, they were not active when the monkeys received the 50-Hz auditory cue but failed to change the direction of the movements by mistake. These observations indicate that the activity of shift-related cells is related to the redirection of the forthcoming movements, but not to the auditory instruction itself or to the location of the target key or the direction of the forthcoming movements. 4. Although infrequently, monkeys made errors in the stay trials and changed directions of the reach voluntarily. In that case, a considerably high proportion of shift-related neurons (12 of 19) exhibited significant activity changes long before initiation of the reach movement. These long-lasting activities were not observed during the preparatory period in correct stay trials, but resembled the shift-related activity observed when the target shift was made toward the same direction. Thus these activity changes were considered to be also related to the process of changing the intended movements voluntarily. 5. We found another population of neurons that showed activity modulation when the target shift was induced by the visual instruction in visual trials (visually guided shift-related neurons). These neurons were active when the light-emitting diode (LED) guided the forthcoming reach to the previous nontarget but not to the previous target. Therefore their activity was not a simple visual response to the LED per se. A majority of them also showed shift-related activity in shift trials (19 of 22 in monkey 2). 6. Neurons exhibiting the shift-related activity were distributed differentially among the two areas. In the pre-SMA, 31% of the neurons recorded showed the shift-related activity, whereas in the SMA, only 7% showed such an activity. These results suggest that pre-SMA and SMA play differential roles in updating the motor plans in accordance with current requirements.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3