Direct Comparison of the Task-Dependent Discharge of M1 in Hand Space and Muscle Space

Author:

Morrow M. M.,Jordan L. R.,Miller L. E.

Abstract

Since its introduction in the early 1980s, the concept of a “preferred direction” for neuronal discharge has proven to be a powerful means of studying motor areas of the brain. In the current paper, we introduce the concept of a “muscle-space”–preferred direction (PDM) that is analogous to the familiar hand-space–preferred direction (PDH). PDM reflects the similarity between the discharge of a given neuron and the activity of each muscle in much the way that PDH reflects the similarity of discharge with motion along each of the three Cartesian coordinate axes. We used PDM to analyze the data recorded from neurons in the primary motor cortex (M1) of three different monkeys. The monkeys performed center-out movements within two different cubical workspaces centered either to the left or right of the monkey's shoulder while we simultaneously recorded neuronal discharge, muscle activity, and limb orientation. We calculated preferred directions in both hand space and muscle space, and computed the angles between these vectors under a variety of conditions. PDs for different neurons were broadly distributed throughout both hand space and muscle space, but the muscle-space vectors appeared to form clusters of functionally similar neurons. In general, repeated estimates of PDM were more stable over time than were similar estimates of PDH. Likewise, there was less change in PDM than in PDH for data recorded from the two different workspaces. However, although a majority of neurons had this muscle-like property, a significant minority was more stable in Cartesian hand space, reflecting a heterogeneity of function within M1.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3