Hypergravity within a critical period impacts on the maturation of somatosensory cortical maps and their potential for use-dependent plasticity in the adult

Author:

Zennou-Azogui Yoh'i1,Catz Nicolas1,Xerri Christian1ORCID

Affiliation:

1. Neurosciences Intégratives et Adaptatives, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte Recherche 7260, Fédération de Recherches Comportement-Cerveau-Cognition 3512, Marseille, France

Abstract

We investigated experience-dependent plasticity of somatosensory maps in rat S1 cortex during early development. We analyzed both short- and long-term effects of exposure to 2 G hypergravity (HG) during the first 3 postnatal weeks on forepaw representations. We also examined the potential of adult somatosensory maps for experience-dependent plasticity after early HG rearing. At postnatal day 22, HG was found to induce an enlargement of cortical zones driven by nail displacements and a contraction of skin sectors of the forepaw map. In these remaining zones serving the skin, neurons displayed expanded glabrous skin receptive fields (RFs). HG also induced a bias in the directional sensitivity of neuronal responses to nail displacement. HG-induced map changes were still found after 16 wk of housing in normogravity (NG). However, the glabrous skin RFs recorded in HG rats decreased to values similar to that of NG rats, as early as the end of the first week of housing in NG. Moreover, the expansion of the glabrous skin area and decrease in RF size normally induced in adults by an enriched environment (EE) did not occur in the HG rats, even after 16 wk of EE housing in NG. Our findings reveal that early postnatal experience critically and durably shapes S1 forepaw maps and limits their potential to be modified by novel experience in adulthood.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3