Flexible adaptation to an artificial recurrent connection from muscle to peripheral nerve in man

Author:

Kato Kenji123,Sasada Syusaku1,Nishimura Yukio124

Affiliation:

1. Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan;

2. Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced studies (SOKENDAI), Hayama, Japan;

3. The Japan Society for the Promotion of Science, Tokyo, Japan; and

4. Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Tokyo, Japan

Abstract

Controlling a neuroprosthesis requires learning a novel input-output transformation; however, how subjects incorporate this into limb control remains obscure. To elucidate the underling mechanisms, we investigated the motor adaptation process to a novel artificial recurrent connection (ARC) from a muscle to a peripheral nerve in healthy humans. In this paradigm, the ulnar nerve was electrically stimulated in proportion to the activation of the flexor carpi ulnaris (FCU), which is ulnar-innervated and monosynaptically innervated from Ia afferents of the FCU, defined as the “homonymous muscle,” or the palmaris longus (PL), which is not innervated by the ulnar nerve and produces similar movement to the FCU, defined as the “synergist muscle.” The ARC boosted the activity of the homonymous muscle and wrist joint movement during a visually guided reaching task. Participants could control muscle activity to utilize the ARC for the volitional control of wrist joint movement and then readapt to the absence of the ARC to either input muscle. Participants reduced homonymous muscle recruitment with practice, regardless of the input muscle. However, the adaptation process in the synergist muscle was dependent on the input muscle. The activity of the synergist muscle decreased when the input was the homonymous muscle, whereas it increased when it was the synergist muscle. This reorganization of the neuromotor map, which was maintained as an aftereffect of the ARC, was observed only when the input was the synergist muscle. These findings demonstrate that the ARC induced reorganization of neuromotor map in a targeted and sustainable manner.

Funder

Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency

MEXT KAKENHI Grant-in Aid, The Ministry of Education, Culture, Sports, Science and Technology

Grant-in-Aids for JSPS Fellows from the Japan Society for the Promotion of Science

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3