Membrane and Firing Properties of Glutamatergic and GABAergic Neurons in the Rat Medial Vestibular Nucleus

Author:

Takazawa Tomonori,Saito Yasuhiko,Tsuzuki Keisuke,Ozawa Seiji

Abstract

In previous studies, neurons in the medial vestibular nucleus (MVN) were classified mainly into 2 types according to their intrinsic membrane properties in in vitro slice preparations. However, it has not been determined whether the classified neurons are excitatory or inhibitory ones. In the present study, to clarify the relationship between the chemical and electrophysiological properties of MVN neurons, we explored mRNAs of cellular markers for GABAergic (glutamic acid decarboxylase 65, 67, and neuronal GABA transporter), glutamatergic (vesicular glutamate transporter 1 and 2), glycinergic (glycine transporter 2), and cholinergic neurons (choline acetyltransferase and vesicular acetylcholine transporter) expressed in electrophysiologically characterized MVN neurons in rat brain stem slice preparations. For this purpose, we combined whole cell patch-clamp recording analysis with single-cell reverse transcription–polymerase chain reaction (RT-PCR) analysis. We examined the membrane properties such as afterhyperpolarization (AHP), firing pattern, and response to hyperpolarizing current pulse to classify MVN neurons. From the single-cell RT-PCR analysis, we found that GABAergic neurons consisted of heterogeneous populations with different membrane properties. Comparison of the membrane properties of GABAergic neurons with those of other neurons revealed that AHPs without slow components and a firing pattern with delayed spike generation (late spiking) were preferential properties of GABAergic neurons. On the other hand, most glutamatergic neurons formed a homogeneous subclass of neurons exhibiting AHPs with slow components, repetitive firings with constant interspike intervals (continuous spiking), and time-dependent inward rectification in response to hyperpolarizing current pulses. We also found a small number of cholinergic neurons with various membrane properties. These findings clarify the electrophysiological properties of excitatory and inhibitory neurons in the MVN, and the information about the preferential membrane properties may be useful for identifying GABAergic and glutamatergic MVN neurons electrophysiologically.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3