Pyramidal Neurons Switch From Integrators In Vitro to Resonators Under In Vivo-Like Conditions

Author:

Prescott Steven A.,Ratté Stéphanie,De Koninck Yves,Sejnowski Terrence J.

Abstract

During wakefulness, pyramidal neurons in the intact brain are bombarded by synaptic input that causes tonic depolarization, increased membrane conductance (i.e., shunting), and noisy fluctuations in membrane potential; by comparison, pyramidal neurons in acute slices typically experience little background input. Such differences in operating conditions can compromise extrapolation of in vitro data to explain neuronal operation in vivo. For instance, pyramidal neurons have been identified as integrators (i.e., class 1 neurons according to Hodgkin's classification of intrinsic excitability) based on in vitro experiments but that classification is inconsistent with the ability of hippocampal pyramidal neurons to oscillate/resonate at theta frequency since intrinsic oscillatory behavior is limited to class 2 neurons. Using long depolarizing stimuli and dynamic clamp to reproduce in vivo-like conditions in slice experiments, we show that CA1 hippocampal pyramidal cells switch from integrators to resonators, i.e., from class 1 to class 2 excitability. The switch is explained by increased outward current contributed by the M-type potassium current IM, which shifts the balance of inward and outward currents active at perithreshold potentials and thereby converts the spike-initiating mechanism as predicted by dynamical analysis of our computational model. Perithreshold activation of IM is enhanced by the depolarizing shift in spike threshold caused by shunting and/or sodium channel inactivation secondary to tonic depolarization. Our conclusions were validated by multiple comparisons between simulation and experimental data. Thus even so-called “intrinsic” properties may differ qualitatively between in vitro and in vivo conditions.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference57 articles.

1. The Contribution of Noise to Contrast Invariance of Orientation Tuning in Cat Visual Cortex

2. Liquid junction potentials and small cell effects in patch-clamp analysis

3. Synaptic background activity influences spatiotemporal integration in single pyramidal cells.

4. Borisyuk A, Rinzel J. Understanding neuronal dynamics by geometrical dissection of minimal models. In: Methods and Models in Neurophysics, Proc Les Houches Summer School, edited by Chow C, Gutkin B, Hansel D, Meunier C; Dalibard J. Amsterdam: Elsevier, 2005, p. 19–72.

5. Buzsáki G. Rhythms of the Brain. Oxford, UK: Oxford Univ. Press, 2006.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3