Pain and Temperature Encoding in the Human Thalamic Somatic Sensory Nucleus (Ventral caudal): Inhibition-Related Bursting Evoked by Somatic Stimuli

Author:

Lee J.-I.,Ohara S.,Dougherty P. M.,Lenz F. A.

Abstract

Stimulus-evoked inhibitory events have not been demonstrated in thalamic spike trains encoding of pain and temperature stimuli. We have now tested the hypothesis that the human thalamic response to mechanical and thermal stimuli is characterized by low-threshold calcium spike (LTS)-associated bursts of high-frequency action potentials preceded by prolonged inhibition. The results included 57 neurons recorded in the human thalamic principal somatic sensory nucleus (ventral caudal, Vc) of 24 patients during awake surgery. Neurons were classified by the grading of their response with stimulus intensity into the painful range (graded or nongraded) and the stimulus response (to mechanical, cold, or heat stimuli). Firing rates were analyzed by the response to all stimuli combined (stimuli overall) and to the stimulus characteristic of the stimulus response type (optimal stimulus), e.g., cold stimuli for neurons of the cold stimulus response type. All neuronal categories had clear stimulus-evoked LTS bursting as identified by the criteria for selecting bursts in the spike train, by significant preburst inhibition, and by preburst inter-spike interval not significantly <100ms. Stimulus-evoked LTS burst rates were significantly higher for neurons in the cold stimulus response type independent of the firing rate between bursts. The parameters of preburst inhibition were largely independent of the neuronal category and the stimuli included in the analysis, which suggests inhibitory mechanisms are similar across neuronal types. Therefore LTS bursting is a substantial, nonlinear component of the spontaneous and stimulus-evoked activity of thalamic neurons in awake humans.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3