Different Roles for AMPA and NMDA Receptors in Transmission at the Immature Retinogeniculate Synapse

Author:

Liu Xiaojin,Chen Chinfei

Abstract

The relay of information at the retinogeniculate synapse, the connection between retina and visual thalamus, begins days before eye opening and is thought to play an important role in the maturation of neural circuits in the thalamus and visual cortex. Remarkably, during this period of development, the retinogeniculate synapse is immature, with single retinal ganglion cell inputs evoking an average peak excitatory postsynaptic current (EPSC) of only about 40 pA compared with 800 pA in mature synapses. Yet, at the mature synapse, EPSCs >400 pA are needed to drive relay neuron firing. This raises the question of how small-amplitude EPSCs can drive transmission at the immature retinogeniculate synapse. Here we find that several features of the immature synapse, compared with the mature synapse, contribute to synaptic transmission. First, although the peak amplitude of EPSC is small, the decay time course of both α-amino-3-hydroxy-5-methyl-4isoxazolepropionic acid receptor (AMPAR) and N-methyl-d-aspartate receptor (NMDAR) currents is significantly slower. The prolonged time course of NMDAR currents is a result of the presence of both NR2B and NR2C/D subunits. In addition, the extended presence of neurotransmitter released prolongs the synaptic current time course. Second, reduced sensitivity to magnesium block results in significantly greater synaptic charge transfer through NMDAR. Third, AMPAR currents contribute to the spike latency, but not to temporal precision, at the immature synapse. Furthermore, intrinsic excitability is greater. These properties enable immature synapses with predominantly NMDARs and little or no AMPARs to contribute to the relay of information from retina to visual cortex.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3