Epileptiform activity in microcultures containing one excitatory hippocampal neuron

Author:

Segal M. M.1

Affiliation:

1. Department of Neurology, Massachusetts General Hospital, Boston.

Abstract

1. Paroxysmal depolarizing shifts (PDSs) occur during interictal epileptiform activity. Sustained depolarizations are characteristic of ictal activity, and events resembling PDSs also occur during the sustained depolarizations. To study these elements of epileptiform activity in a simpler context, I used the in vitro chronic-excitatory-block model of epilepsy of Furshpan and Potter and the microculture technique of Segal and Furshpan. 2. Intracellular recordings were made from 93 single-neuron microcultures. Forty of these solitary neurons were excitatory, their action potentials were replaced by PDS-like events or sustained depolarizations as kynurenate was removed from the perfusion solution. PDS-like events were similar to PDSs in intact cortex, mass cultures, and microcultures with more than one neuron. Small voltage fluctuations were also seen in solitary excitatory neurons in the absence of recorded action potentials. Sustained depolarizations developed in 5 of the 40 excitatory neurons. Forty-eight of the 93 solitary neurons were inhibitory, with bicuculline-sensitive hyperpolarizations after the action potential (ascribable to gamma-aminobutyric acid-A autapses). None of the solitary inhibitory neurons displayed sustained depolarizations. Five of the 93 neurons were insensitive to both kynurenate and bicuculline and were not placed in either the excitatory or the inhibitory category. 3. Both N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors contributed to the PDS-like events and sustained depolarizations. Only a non-NMDA glutamate receptor component was evident for the small voltage fluctuations. 4. Intracellular recordings were also made from two-neuron microcultures, each containing one excitatory neuron and one inhibitory neuron. Sustained depolarizations developed in five microcultures, in each case only in the excitatory neuron.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3