Response of joint capsule neurons to axial stress and strain during dynamic loading in cat

Author:

Fuller M. S.1,Grigg P.1,Hoffman A. H.1

Affiliation:

1. Division of Cardiology, University of Utah Medical School, Salt LakeCity 84108.

Abstract

1. Experiments were conducted to test the hypothesis that the responses of joint capsule mechanoreceptors better encode tissue stress or tissue strain. The experimental model was a small ligament from the cat knee capsule, which was stretched uniaxially in vitro. Experiments were done with either force or displacement as the controlled variable, and with steps, sinusoids, or pseudorandom Gaussian noise (PGN) as the input function. 2. The strength of coupling between neural discharge and both strain and stress was quantified during step experiments using linear correlation coefficients. The correlation between the frequency of neural discharge and stress was 0.93 +/- 0.09 (SD). The correlation between frequency of neural discharge and strain was -0.91 +/- 0.06. The magnitudes of these correlation coefficients were not significantly different. 3. The strength of coupling between neural discharge and both strain and stress during sinusoidal and PGN experiments was quantified by the use of an information theoretic statistic, transinformation. Out of 282 sinusoidal runs, transinformation between neural discharge and stress was significantly greater than transinformation between strain and neural discharge 241 times. Transinformation between strain and neural discharge was significantly greater 15 times. 4. During PGN experiments, transinformation between stress and neural discharge was greater than transinformation between strain and neural discharge in all 19 experimental runs. 5. Conditional transinformation between strain and neural discharge, given stress, was calculated for all sinusoidal and pseudorandom experiments. This statistic was greater than zero in 268 out of 289 experimental runs, indicating that a component of strain independent of stress is being signaled in the neural discharge.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3