Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters

Author:

Mink J. W.1,Thach W. T.1

Affiliation:

1. Department of Anatomy, Washington University School of Medicine, St.Louis, Missouri 63110.

Abstract

1. We have tested the hypothesis that the basal ganglia initiate some one or several modes of movement by recording the change in discharge frequency of pallidal neurons during visually triggered step and visually paced ramp moves in relation to the visual stimulus onset, the change in the electromyograph (EMG), and the movement onset of trained rhesus monkeys. 2. The modal times of change for globus pallidus pars interna (GPi) were significantly later than those for forearm agonist muscle EMG. By contrast, the modal time of change for the cerebellar dentate nucleus preceded that for wrist agonist EMG. 3. The direction of change in discharge frequency of the GPi cells was for 71% an increase and for 29% a decrease. 4. Because of the relatively late change of activity of GPi neurons, we propose that GPi neurons cannot initiate these movements, as others have also suggested. The commands for the initiation of these movements may instead be generated by structures that include the lateral cerebellum and the anterior cerebral cortex. 5. We have also tested the hypothesis that the pallidum of the basal ganglia or the dentate of the lateral cerebellum may control the direction and other parameters of the trajectory by recording from both structures to see whether cell discharge correlated with the parameter and whether the correlation was consistent across tasks. Two rhesus monkeys were trained to perform hold-ramp-hold and hold-step-hold visually guided movements in opposite directions by flexing and extending the wrist with and against uniform oppositely directed torque loads (0.2 Nm). Wrist position, velocity, force, and EMG were recorded simultaneously. Movement amplitudes and directional intent were computed and inferred, respectively. 6. Task related neurons were classified as follows: 1) directional, if the discharge rate was reciprocal for opposite movements or if it increased or decreased during movement in one direction only; 2) bidirectional, if the discharge rate increased or decreased during movement in both directions; and 3) "other," if it was directional under one load and bidirectional under the other. During step tracking, 34 GPi, 47 globus pallidus pars externa (GPe), and 44 cerebellar dentate nuclear neurons were related to the task. Of the GPi cells, 14 (41%) were directional, 6 (18%) bidirectional, and 14 (41%) other. Of the GPe neurons, 13 (28%) were directional, 19 (40%) bidirectional, and 15 (32%) other. Of the dentate cerebellar nuclear cells, 5 (11%) were bidirectional, 31 (70%) bidirectional, and 8 (18%) other.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3