Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli

Author:

Duffy C. J.1,Wurtz R. H.1

Affiliation:

1. Laboratory of Sensorimotor Research, National Eye Institute, NationalInstitutes of Health, Bethesda, Maryland 20892.

Abstract

1. In these experiments we examined the receptive field mechanisms that support the optic flow field selective responses of neurons in the dorsomedial region of the medial superior temporal area (MSTd). Our experiments tested the predictions of two hypotheses of optic flow field selectivity. The direction mosaic hypothesis states that these receptive fields contain a set of planar direction-selective subfields that match the local directions of motion within optic flow fields. The vector field hypothesis states that these receptive fields are uniquely sensitive to distributed properties of planar, circular, or radial optic flow fields. 2. Experiments using large-field stimuli revealed that some neurons showed changes in optic flow field selectivity depending on the position of the stimulus in the receptive field; these are position-dependent responses. However, other neurons maintained the same optic flow field selectivities in spite of changes in stimulus position; these are position-invariant responses. We have used the position dependence or invariance of optic flow field selectivity as a way of testing the direction mosaic and vector field hypotheses. Position dependence is more consistent with the direction mosaic hypothesis, whereas position invariance is more consistent with the vector field hypothesis. 3. To test for position effects, we examined the optic flow field selectivity of small subfields within the large receptive fields of 160 MSTd neurons. First, we centered small-field optic flow stimuli of various sizes over the same position in the receptive field. Most MSTd neurons showed decreasing response amplitude with decreasing stimulus size but maintained optic flow field selectivity. 4. We then placed small-field stimuli at various positions within the large receptive field of these MSTd neurons. Position-invariant response selectivity was most prominent in single-component neurons, suggesting that they were more consistent with the vector field hypothesis. Position-dependent response selectivity was most prominent in triple-component neurons, suggesting that they were more consistent with the direction mosaic hypothesis. However, the variations in planar direction preference throughout the receptive field of these triple-component neurons were not consistent with a direction mosaic explanation of the large-field circular or radial selectivity observed. 5. Small-field position studies also demonstrated the existence of zones within the receptive field in which either direction-selective inhibitory or direction-selective excitatory responses predominated. The degree of overlap between these zones increased from nonselective to triple- to double- and finally to single-component neurons.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3