Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex

Author:

Friauf E.1,Shatz C. J.1

Affiliation:

1. Department of Neurobiology, Stanford University School of Medicine,California 94305.

Abstract

1. The development of excitatory activation in the visual cortex was studied in fetal and neonatal cats. During fetal and neonatal life, the immature cerebral cortex (the cortical plate) is sandwiched between two synaptic zones: the marginal zone above, and an area just below the cortical plate, the subplate. The subplate is transient and disappears by approximately 2 mo postnatal. Here we have investigated whether the subplate and the cortical plate receive functional synaptic inputs in the fetus, and when the adultlike pattern of excitatory synaptic input to the cortical plate appears during development. 2. Extracellular field potential recording to electrical stimulation of the optic radiation was performed in slices of cerebral cortex maintained in vitro. Laminar profiles of field potentials were converted by the current-source density (CSD) method to identify the spatial and temporal distribution of neuronal excitation within the subplate and the cortical plate. 3. Between embryonic day 47 (E47) and postnatal day 28 (P28; birth, E65), age-related changes occur in the pattern of synaptic activation of neurons in the cortical plate and the subplate. Early in development, at E47, E57, and P0, short-latency (probably monosynaptic) excitation is most obvious in the subplate, and longer latency (presumably polysynaptic) excitation can be seen in the cortical plate. Synaptic excitation in the subplate is no longer apparent at P21 and P28, a time when cell migration is finally complete and the cortical layers have formed. By contrast, excitation in the cortical plate is prominent in postnatal animals, and the temporal and spatial pattern has changed. 4. The adultlike sequence of synaptic activation in the different cortical layers can be seen by P28. It differs from earlier ages in several respects. First, short-latency (probably monosynaptic) excitation can be detected in cortical layer 4. Second, multisynaptic, long-lasting activation is present in layers 2/3 and 5. 5. Our results show that the subplate zone, known from anatomic studies to be a synaptic neurophil during development, receives functional excitatory inputs from axons that course in the developing white matter. Because the only mature neurons present in this zone are the subplate neurons, we conclude that subplate neurons are the principal, if not the exclusive, recipients of this input. The results suggest further that the excitation in the subplate in turn is relayed to neurons of the cortical plate via axon collaterals of subplate neurons.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3