A voltage- and time-dependent rectification in rat dorsal spinal root axons

Author:

Birch B. D.1,Kocsis J. D.1,Di Gregorio F.1,Bhisitkul R. B.1,Waxman S. G.1

Affiliation:

1. Department of Neurology, Yale University School of Medicine, New Haven06510.

Abstract

1. Rat dorsal spinal roots were studied by the use of whole-nerve sucrose gap and intra-axonal recording techniques. A prominent time-dependent conductance increase as evidenced by a relaxation or "sag" in membrane potential toward resting potential was elicited in dorsal spinal roots by constant hyperpolarizing current pulses. The relaxation, or sag, indicative of inward rectification, reached a maximal level and then decayed during the current pulse. 2. The time-dependent sag elicited by hyperpolarization was reduced when Na+ or K+ was removed from the normal bath solution but was abolished with the removal of both Na+ and K+. Tetrodotoxin (TTX), tetraethylammonium (TEA), and 4-aminopyridine (4-AP) did not affect the depolarization sag, suggesting that conventional voltage-dependent sodium and potassium channels do not underlie the inward rectification. 3. Cs+ in low concentrations completely abolished the inward rectification, whereas Ba2+ induced a partial block. 4. Current-voltage curves indicate that the magnitude of the depolarizing sag increases monotonically with increasing hyperpolarization. The time required to reach peak hyperpolarization, maximal sag potential, and the time between peak hyperpolarization and sag membrane potentials decreases with increasing levels of hyperpolarization. 5. The inward rectification is refractory to further stimulation during its decay phase, as revealed by paired-pulse protocols. This decay in inward rectification is both time and voltage dependent and is observed on a single axon level by the use of intra-axonal recording techniques as well as from whole-root recordings in the sucrose gap. 6. It is concluded that rat dorsal root fibers display a prominent time-dependent conductance increase in response to hyperpolarization that depends on both Na+ and K+ permeability and is blocked by Cs+. This rectification displays a decay phase that has not been previously described for similar conductances. It is argued that the Na+ component of this conductance is primarily responsible for stabilizing membrane potential near resting potential during periods of hyperpolarization.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3