Convergence of phrenic and cardiopulmonary spinal afferent information on cervical and thoracic spinothalamic tract neurons in the monkey: implications for referred pain from the diaphragm and heart

Author:

Bolser D. C.1,Hobbs S. F.1,Chandler M. J.1,Ammons W. S.1,Brennan T. J.1,Foreman R. D.1

Affiliation:

1. Department of Physiology and Biophysics, University of Oklahoma HealthSciences Center, Oklahoma City.

Abstract

1. Spinothalamic tract (STT) neurons in the C3-T6 spinal segments were studied for their responses to stimulation of phrenic and cardiopulmonary spinal afferent fibers. A total of 142 STT neurons were studied in 44 anesthetized, paralyzed monkeys (Macaca fascicularis). All neurons were antidromically activated from the ventroposterolateral nucleus and/or medial thalamus. 2. Electrical stimulation of phrenic afferent fibers (PHR) excited 43/58 (74%), inhibited 2/58 (3%), and did not affect 13/58 (13%) of cervical STT neurons. Neurons with excitatory somatic fields confined to the proximal limb or encompassing the whole limb were excited to a significantly greater extent by electrical stimulation of PHR than were neurons with somatic fields confined to the distal limb. Mechanical stimulation of PHR by probing the exposed diaphragm excited 11/22 (50%), inhibited 3/22 (14%), and did not affect 8/22 (36%) cervical STT neurons. 3. The technique of minimum afferent conduction velocity (MACV) was used to obtain information about the identity of the PHR that excited 35 cervical STT neurons. Evidence was obtained for excitation of these neurons by group II and III PHR. The mean +/- SE MACV for all neurons was 14 +/- 2 m/s. 4. Electrical stimulation of cardiopulmonary spinal afferent fibers excited 41/57 (72%), inhibited 8/57 (14%), and did not affect 8/57 (14%) of cervical STT neurons. Neurons with excitatory somatic fields confined to the proximal limb or encompassing the whole limb were excited to a significantly greater extent by electrical stimulation of cardiopulmonary spinal afferents than were neurons with somatic fields confined to the distal limb. 5. Excitatory convergence of PHR and cardiopulmonary spinal afferent input was observed for 36/57 (63%) cervical STT neurons. 6. Electrical stimulation of PHR excited 36/84 (43%), inhibited 25/84 (30%), and did not affect 23/84 (27%) of thoracic STT neurons. All of these neurons received excitatory cardiopulmonary spinal afferent input. 7. Neurons were more likely to be excited by electrical stimulation of PHR if they were located in C3-C6 spinal segments. Furthermore, the net excitatory effect of PHR input decreased in more caudal segments, such that thoracic STT neurons were weakly excited relative to cervical STT neurons. 8. We conclude that cervical STT neurons with excitatory somatic fields that include or are restricted to proximal sites are excited by electrical or mechanical stimulation of PHR. Those effects demonstrate a physiological substrate for pain referred from the diaphragm to the shoulder in patients with pleural effusions or subphrenic abscesses.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3