Affiliation:
1. Department of Anatomy and Neurosciences, University of Texas MedicalBranch, Galveston 77550.
Abstract
1. Intracellular recordings were made from 43 spinothalamic (STT) neurons in the lumbosacral region of the spinal cord in anesthetized macaque monkeys. The antidromic responses of these neurons to electrical stimulation of the ventral posterior lateral (VPL) nucleus of the thalamus were examined, and orthodromic responses to electrical stimulation of the sural nerve or to mechanical stimulation of hindlimb skin were recorded to study the electrophysiological features of these neurons and their responses to afferent inputs. 2. The resting membrane potential of the neurons ranged from -26 to -70 mV and the antidromic latency from 2.3 to 9.1 ms. Three of the neurons were located in lamina 1 and were recorded so briefly that only antidromic and spontaneous activity could be studied. The rest of the neurons were located in laminae III-V and were of the wide-dynamic-range (WDR) type. 3. The antidromic action potentials recorded in the somas of STT neurons typically showed a fast rising phase and a short initial segment-somadendritic (IS-SD) delay. After repetitive antidromic stimulation, a progressive elongation of the IS-SD delay, widening of the spike, and failure of the SD spike were observed. 4. The afterpotential of the antidromic action potential consisted of a fast afterhyperpolarization (AHPf) and sometimes a delayed depolarization (DD) and a slow afterhyperpolarization (AHPs). The amplitude and the duration of the AHPs were progressively increased when longer trains of stimuli were used. When the membrane potential was hyperpolarized, the amplitude of the AHPs decreased, suggesting an involvement of K+ and/or Cl- ions. However, the AHPs completely disappeared when the strength of stimulation was adjusted to a level just below the threshold for the axon, suggesting that it was unlikely that recurrent inhibition contributed to the AHPs. 5. The background activity of 32 STT neurons was analyzed. The membrane potential at which spikes were triggered in these neurons was around -42 mV. The width and the rise time of the spontaneous spikes were shorter than those of antidromic action potentials, although the maximum rate of rise was similar. The heights of the spontaneous spikes were slightly shorter than those of antidromic action potentials. 6. Three types of background activity have been observed. One type had a very low average spontaneous rate with a bursting firing pattern, consisting of a few spikes superimposed on a depolarization. This type of activity was seen mostly in lamina I neurons. The second type of activity had a moderate to high spontaneous rate with a fairly constant interval between spikes.(ABSTRACT TRUNCATED AT 400 WORDS)
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献