Spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat

Author:

Fyffe R. E.1

Affiliation:

1. Department of Physiology, University of North Carolina, Chapel Hill27599-7545.

Abstract

1. Intracellular staining of Renshaw cells and alpha motoneurons was used to determine the spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat. In each experiment, a Renshaw cell and one or more possible target motoneurons were labeled with horseradish peroxidase after physiological identification. 2. Paris of labeled neurons were reconstructed and measured at the light microscopic level. As defined by light microscopy, presumed synaptic contacts between nine Renshaw cells and 10 postsynaptic motoneurons were observed. On average, each Renshaw cell made three synaptic contacts (range 1-9) on each motoneuron. 3. Electron microscopic confirmation of several presumed contacts provided evidence that the appositions identified by light microscopic criteria are genuine contacts between Renshaw cell boutons and the labeled motoneuron. 4. All of the identified synapses observed in these experiments were located on motoneuron dendrites, between 65 and 706 microns from the soma. Use of a simplified cable model indicated that the synapses are electrotonically close to the soma, the average location being approximately 0.25 length constants from the soma (range 0.04-0.82 lambda). 5. These observations provide direct evidence to support the hypothesis that Renshaw cell synapses on motoneurons are located on the dendrites and not on the cell body (whereas reciprocal inhibitory synapses, from Ia inhibitory interneurons, are predominantly located on the soma). The functional significance of the observed distribution of Renshaw inhibitory synapses is discussed. One possibility is that the recurrent inhibitory pathway selectively inhibits particular dendritic inputs.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3