Correlation of physiologically and morphologically identified neuronal types in human association cortex in vitro

Author:

Foehring R. C.1,Lorenzon N. M.1,Herron P.1,Wilson C. J.1

Affiliation:

1. Department of Anatomy and Neurobiology, University of Tennessee,Memphis 38163.

Abstract

1. We examined whether the three physiologically defined neuron types described for rodent neocortex were also evident in human association cortex studied in an in vitro brain slice preparation. We also examined the relationship between physiological and morphological cell type in human neocortical neurons. In particular, we tested whether burst-firing neurons were numerous in regions of human cortex that are susceptible to seizures. 2. Although we sampled regular-spiking and fast-spiking neurons, we observed no true burst-firing neurons, as defined for rodent cortex. We did find neurons that displayed a voltage-dependent shift in firing behavior. Because this behavior was due, in large part, to a low-threshold calcium conductance, we called these cells low-threshold spike (LTS) neurons. 3. Regular-spiking neurons and LTS neurons only differed in the voltage dependence of firing behavior and the first few interspike intervals (ISIs) of repetitive firing in response to small current injections (from hyperpolarized membrane potentials). Because of the general similarities between the two types, we consider the LTS cells to be a subgroup of regular-spiking cells. 4. All biocytin-filled regular-spiking neurons were spiny and pyramidal and found in layers II-VI. The lone filled fast-spiking cell was aspiny and nonpyramidal (layer V). The LTS neurons were morphologically heterogeneous. We found 80% of LTS neurons to be spiny and pyramidal, but 20% were aspiny nonpyramidal cells. LTS neurons were located in layers II-VI. 5. In conclusion, human association cortex contains two of three physiological cell types described in rodent cortex: regular spiking and fast spiking. These physiological types corresponded to spiny, pyramidal, and aspiny, nonpyramidal cells, respectively. We sampled no intrinsic burst-firing neurons in human association cortex. LTS neurons exhibited voltage-dependent changes in firing behavior and were morphologically heterogeneous: most LTS cells were spiny and pyramidal, but two cells were found to be aspiny and nonpyramidal. It is not clear whether the absence of burst-firing neurons or the morphological heterogeneity of LTS neurons are due to species differences or differences in cortical areas.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3