Analysis of Ia-inhibitory synaptic input to cat spinal motoneurons evoked by vibration of antagonist muscles

Author:

Heckman C. J.1,Binder M. D.1

Affiliation:

1. Department of Physiology and Biophysics, University of WashingtonSchool of Medicine, Seattle 98195.

Abstract

1. Steady-state inhibitory postsynaptic potentials (IPSPs) were evoked in tibialis anterior and extensor digitorum longus motoneurons of the cat by using tendon vibration to activate Ia-afferent fibers from the antagonist medial gastrocnemius muscle. 2. The effective synaptic currents (IN) underlying the steady-state IPSPs were measured by the use of a modified voltage-clamp technique. The amplitudes of the effective synaptic currents (1.62 +/- 0.66 nA, mean +/- SD; n = 20) extended over a fivefold range (0.5-2.7 nA) but were not correlated with the intrinsic properties of the motoneurons or with putative motor unit type. 3. We calculated the synaptic conductance (GS) underlying the steady-state Ia IPSPs from measurements of motoneuron input conductance during the activation of the Ia synaptic input. As was expected from Ohm's law, the Ia-inhibitory GS and IN were correlated (r = 0.49; P less than 0.05). Like IN, GS (175 +/- 202 nS, mean +/- SD; n = 20) was not correlated with the intrinsic properties of the motoneurons. 4. As has been reported previously for transient Ia IPSPs, the amplitudes of the steady-state IPSPs were correlated with motoneuron input resistance (r = 0.74; P less than 0.001) and homonymous Ia excitatory postsynaptic synaptic potential (EPSP) amplitude (r = 0.72; P less than 0.001). 5. The amplitudes of the steady-state Ia IPSPs and the homonymous Ia EPSPs were plotted on logarithmic axes. The slope (0.59) was significantly less than 1, which indicates that the gradient of Ia inhibition across the motoneuron pool is less steep than that of Ia excitation.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3